/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Diff of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

Revision 1.48 Revision 1.102
1# Copyright 1999-2005 Gentoo Foundation 1# Copyright 1999-2007 Gentoo Foundation
2# Distributed under the terms of the GNU General Public License v2 2# Distributed under the terms of the GNU General Public License v2
3# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.48 2005/11/03 10:10:48 eradicator Exp $ 3# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.102 2010/09/11 17:12:20 vapier Exp $
4# 4
5# @ECLASS: toolchain-funcs.eclass
6# @MAINTAINER:
5# Author: Toolchain Ninjas <toolchain@gentoo.org> 7# Toolchain Ninjas <toolchain@gentoo.org>
6# 8# @BLURB: functions to query common info about the toolchain
7# This eclass contains (or should) functions to get common info 9# @DESCRIPTION:
8# about the toolchain (libc/compiler/binutils/etc...) 10# The toolchain-funcs aims to provide a complete suite of functions
11# for gleaning useful information about the toolchain and to simplify
12# ugly things like cross-compiling and multilib. All of this is done
13# in such a way that you can rely on the function always returning
14# something sane.
9 15
10inherit multilib 16___ECLASS_RECUR_TOOLCHAIN_FUNCS="yes"
17[[ -z ${___ECLASS_RECUR_MULTILIB} ]] && inherit multilib
11 18
12DESCRIPTION="Based on the ${ECLASS} eclass" 19DESCRIPTION="Based on the ${ECLASS} eclass"
13 20
14tc-getPROG() { 21tc-getPROG() {
15 local var=$1 22 local var=$1
27 34
28 export ${var}=${prog} 35 export ${var}=${prog}
29 echo "${!var}" 36 echo "${!var}"
30} 37}
31 38
32# Returns the name of the archiver 39# @FUNCTION: tc-getAR
40# @USAGE: [toolchain prefix]
41# @RETURN: name of the archiver
33tc-getAR() { tc-getPROG AR ar "$@"; } 42tc-getAR() { tc-getPROG AR ar "$@"; }
34# Returns the name of the assembler 43# @FUNCTION: tc-getAS
44# @USAGE: [toolchain prefix]
45# @RETURN: name of the assembler
35tc-getAS() { tc-getPROG AS as "$@"; } 46tc-getAS() { tc-getPROG AS as "$@"; }
47# @FUNCTION: tc-getCC
48# @USAGE: [toolchain prefix]
36# Returns the name of the C compiler 49# @RETURN: name of the C compiler
37tc-getCC() { tc-getPROG CC gcc "$@"; } 50tc-getCC() { tc-getPROG CC gcc "$@"; }
51# @FUNCTION: tc-getCPP
52# @USAGE: [toolchain prefix]
53# @RETURN: name of the C preprocessor
54tc-getCPP() { tc-getPROG CPP cpp "$@"; }
55# @FUNCTION: tc-getCXX
56# @USAGE: [toolchain prefix]
38# Returns the name of the C++ compiler 57# @RETURN: name of the C++ compiler
39tc-getCXX() { tc-getPROG CXX g++ "$@"; } 58tc-getCXX() { tc-getPROG CXX g++ "$@"; }
40# Returns the name of the linker 59# @FUNCTION: tc-getLD
60# @USAGE: [toolchain prefix]
61# @RETURN: name of the linker
41tc-getLD() { tc-getPROG LD ld "$@"; } 62tc-getLD() { tc-getPROG LD ld "$@"; }
63# @FUNCTION: tc-getSTRIP
64# @USAGE: [toolchain prefix]
65# @RETURN: name of the strip program
66tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
67# @FUNCTION: tc-getNM
68# @USAGE: [toolchain prefix]
42# Returns the name of the symbol/object thingy 69# @RETURN: name of the symbol/object thingy
43tc-getNM() { tc-getPROG NM nm "$@"; } 70tc-getNM() { tc-getPROG NM nm "$@"; }
71# @FUNCTION: tc-getRANLIB
72# @USAGE: [toolchain prefix]
44# Returns the name of the archiver indexer 73# @RETURN: name of the archiver indexer
45tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; } 74tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
46# Returns the name of the fortran compiler 75# @FUNCTION: tc-getOBJCOPY
76# @USAGE: [toolchain prefix]
77# @RETURN: name of the object copier
78tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; }
79# @FUNCTION: tc-getF77
80# @USAGE: [toolchain prefix]
81# @RETURN: name of the Fortran 77 compiler
47tc-getF77() { tc-getPROG F77 f77 "$@"; } 82tc-getF77() { tc-getPROG F77 gfortran "$@"; }
83# @FUNCTION: tc-getFC
84# @USAGE: [toolchain prefix]
85# @RETURN: name of the Fortran 90 compiler
86tc-getFC() { tc-getPROG FC gfortran "$@"; }
87# @FUNCTION: tc-getGCJ
88# @USAGE: [toolchain prefix]
48# Returns the name of the java compiler 89# @RETURN: name of the java compiler
49tc-getGCJ() { tc-getPROG GCJ gcj "$@"; } 90tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
91# @FUNCTION: tc-getPKG_CONFIG
92# @USAGE: [toolchain prefix]
93# @RETURN: name of the pkg-config tool
94tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; }
95# @FUNCTION: tc-getRC
96# @USAGE: [toolchain prefix]
97# @RETURN: name of the Windows resource compiler
98tc-getRC() { tc-getPROG RC windres "$@"; }
99# @FUNCTION: tc-getDLLWRAP
100# @USAGE: [toolchain prefix]
101# @RETURN: name of the Windows dllwrap utility
102tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; }
50 103
51# Returns the name of the C compiler for build 104# @FUNCTION: tc-getBUILD_CC
105# @USAGE: [toolchain prefix]
106# @RETURN: name of the C compiler for building binaries to run on the build machine
52tc-getBUILD_CC() { 107tc-getBUILD_CC() {
53 local v 108 local v
54 for v in CC_FOR_BUILD BUILD_CC HOSTCC ; do 109 for v in CC_FOR_BUILD BUILD_CC HOSTCC ; do
55 if [[ -n ${!v} ]] ; then 110 if [[ -n ${!v} ]] ; then
56 export BUILD_CC=${!v} 111 export BUILD_CC=${!v}
68 123
69 export BUILD_CC=${search} 124 export BUILD_CC=${search}
70 echo "${search}" 125 echo "${search}"
71} 126}
72 127
128# @FUNCTION: tc-export
129# @USAGE: <list of toolchain variables>
130# @DESCRIPTION:
73# Quick way to export a bunch of vars at once 131# Quick way to export a bunch of compiler vars at once.
74tc-export() { 132tc-export() {
75 local var 133 local var
76 for var in "$@" ; do 134 for var in "$@" ; do
135 [[ $(type -t tc-get${var}) != "function" ]] && die "tc-export: invalid export variable '${var}'"
77 eval tc-get${var} > /dev/null 136 eval tc-get${var} > /dev/null
78 done 137 done
79} 138}
80 139
81# A simple way to see if we're using a cross-compiler ... 140# @FUNCTION: tc-is-cross-compiler
141# @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
82tc-is-cross-compiler() { 142tc-is-cross-compiler() {
83 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]]) 143 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
144}
145
146# @FUNCTION: tc-is-softfloat
147# @DESCRIPTION:
148# See if this toolchain is a softfloat based one.
149# @CODE
150# The possible return values:
151# - only: the target is always softfloat (never had fpu)
152# - yes: the target should support softfloat
153# - no: the target doesn't support softfloat
154# @CODE
155# This allows us to react differently where packages accept
156# softfloat flags in the case where support is optional, but
157# rejects softfloat flags where the target always lacks an fpu.
158tc-is-softfloat() {
159 case ${CTARGET} in
160 bfin*|h8300*)
161 echo "only" ;;
162 *)
163 [[ ${CTARGET//_/-} == *-softfloat-* ]] \
164 && echo "yes" \
165 || echo "no"
166 ;;
167 esac
168}
169
170# @FUNCTION: tc-is-hardfloat
171# @DESCRIPTION:
172# See if this toolchain is a hardfloat based one.
173# @CODE
174# The possible return values:
175# - yes: the target should support hardfloat
176# - no: the target doesn't support hardfloat
177tc-is-hardfloat() {
178 [[ ${CTARGET//_/-} == *-hardfloat-* ]] \
179 && echo "yes" \
180 || echo "no"
181}
182
183# @FUNCTION: tc-is-static-only
184# @DESCRIPTION:
185# Return shell true if the target does not support shared libs, shell false
186# otherwise.
187tc-is-static-only() {
188 local host=${CTARGET:-${CHOST}}
189
190 # *MiNT doesn't have shared libraries, only platform so far
191 return $([[ ${host} == *-mint* ]])
192}
193
194# @FUNCTION: tc-has-openmp
195# @USAGE: [toolchain prefix]
196# @DESCRIPTION:
197# See if the toolchain supports OpenMP.
198tc-has-openmp() {
199 local base="${T}/test-tc-openmp"
200 cat <<-EOF > "${base}.c"
201 #include <omp.h>
202 int main() {
203 int nthreads, tid, ret = 0;
204 #pragma omp parallel private(nthreads, tid)
205 {
206 tid = omp_get_thread_num();
207 nthreads = omp_get_num_threads(); ret += tid + nthreads;
208 }
209 return ret;
210 }
211 EOF
212 $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null
213 local ret=$?
214 rm -f "${base}"*
215 return ${ret}
216}
217
218# @FUNCTION: tc-has-tls
219# @USAGE: [-s|-c|-l] [toolchain prefix]
220# @DESCRIPTION:
221# See if the toolchain supports thread local storage (TLS). Use -s to test the
222# compiler, -c to also test the assembler, and -l to also test the C library
223# (the default).
224tc-has-tls() {
225 local base="${T}/test-tc-tls"
226 cat <<-EOF > "${base}.c"
227 int foo(int *i) {
228 static __thread int j = 0;
229 return *i ? j : *i;
230 }
231 EOF
232 local flags
233 case $1 in
234 -s) flags="-S";;
235 -c) flags="-c";;
236 -l) ;;
237 -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";;
238 esac
239 : ${flags:=-fPIC -shared -Wl,-z,defs}
240 [[ $1 == -* ]] && shift
241 $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null
242 local ret=$?
243 rm -f "${base}"*
244 return ${ret}
84} 245}
85 246
86 247
87# Parse information from CBUILD/CHOST/CTARGET rather than 248# Parse information from CBUILD/CHOST/CTARGET rather than
88# use external variables from the profile. 249# use external variables from the profile.
94 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}} 255 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
95 256
96 case ${host} in 257 case ${host} in
97 alpha*) echo alpha;; 258 alpha*) echo alpha;;
98 arm*) echo arm;; 259 arm*) echo arm;;
260 avr*) ninj avr32 avr;;
261 bfin*) ninj blackfin bfin;;
99 cris*) echo cris;; 262 cris*) echo cris;;
100 hppa*) ninj parisc hppa;; 263 hppa*) ninj parisc hppa;;
101 i?86*) ninj i386 x86;; 264 i?86*)
265 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
266 # trees have been unified into 'x86'.
267 # FreeBSD still uses i386
268 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -lt $(KV_to_int 2.6.24) || ${host} == *freebsd* ]] ; then
269 echo i386
270 else
271 echo x86
272 fi
273 ;;
102 ia64*) echo ia64;; 274 ia64*) echo ia64;;
103 m68*) echo m68k;; 275 m68*) echo m68k;;
104 mips*) echo mips;; 276 mips*) echo mips;;
105 powerpc64*) echo ppc64;; 277 nios2*) echo nios2;;
278 nios*) echo nios;;
279 powerpc*)
280 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
281 # have been unified into simply 'powerpc', but until 2.6.16,
282 # ppc32 is still using ARCH="ppc" as default
283 if [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] && [[ ${type} == "kern" ]] ; then
284 echo powerpc
285 elif [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] && [[ ${type} == "kern" ]] ; then
286 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
287 echo powerpc
288 else
289 echo ppc
290 fi
291 elif [[ ${host} == powerpc64* ]] ; then
292 echo ppc64
106 powerpc*) [[ ${PROFILE_ARCH} == "ppc64" ]] \ 293 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
107 && ninj ppc64 ppc \ 294 ninj ppc64 ppc
295 else
108 || echo ppc 296 echo ppc
297 fi
109 ;; 298 ;;
110 s390*) echo s390;; 299 s390*) echo s390;;
111 sh64*) ninj sh64 sh;; 300 sh64*) ninj sh64 sh;;
112 sh*) echo sh;; 301 sh*) echo sh;;
113 sparc64*) ninj sparc64 sparc;; 302 sparc64*) ninj sparc64 sparc;;
114 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \ 303 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
115 && ninj sparc64 sparc \ 304 && ninj sparc64 sparc \
116 || echo sparc 305 || echo sparc
117 ;; 306 ;;
118 vax*) echo vax;; 307 vax*) echo vax;;
119 x86_64*) ninj x86_64 amd64;; 308 x86_64*)
120 *) echo ${ARCH};; 309 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
310 # trees have been unified into 'x86'.
311 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.24) ]] ; then
312 echo x86
313 else
314 ninj x86_64 amd64
315 fi
316 ;;
317
318 # since our usage of tc-arch is largely concerned with
319 # normalizing inputs for testing ${CTARGET}, let's filter
320 # other cross targets (mingw and such) into the unknown.
321 *) echo unknown;;
121 esac 322 esac
122} 323}
324# @FUNCTION: tc-arch-kernel
325# @USAGE: [toolchain prefix]
326# @RETURN: name of the kernel arch according to the compiler target
123tc-arch-kernel() { 327tc-arch-kernel() {
124 tc-ninja_magic_to_arch kern $@ 328 tc-ninja_magic_to_arch kern "$@"
125} 329}
330# @FUNCTION: tc-arch
331# @USAGE: [toolchain prefix]
332# @RETURN: name of the portage arch according to the compiler target
126tc-arch() { 333tc-arch() {
127 tc-ninja_magic_to_arch portage $@ 334 tc-ninja_magic_to_arch portage "$@"
128} 335}
336
129tc-endian() { 337tc-endian() {
130 local host=$1 338 local host=$1
131 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}} 339 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
132 host=${host%%-*} 340 host=${host%%-*}
133 341
150 x86_64*) echo little;; 358 x86_64*) echo little;;
151 *) echo wtf;; 359 *) echo wtf;;
152 esac 360 esac
153} 361}
154 362
155# Returns the version as by `$CC -dumpversion` 363# Internal func. The first argument is the version info to expand.
364# Query the preprocessor to improve compatibility across different
365# compilers rather than maintaining a --version flag matrix. #335943
366_gcc_fullversion() {
367 local ver="$1"; shift
368 set -- `$(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__"`
369 eval echo "$ver"
370}
371
372# @FUNCTION: gcc-fullversion
373# @RETURN: compiler version (major.minor.micro: [3.4.6])
156gcc-fullversion() { 374gcc-fullversion() {
157 echo "$($(tc-getCC) -dumpversion)" 375 _gcc_fullversion '$1.$2.$3' "$@"
158} 376}
159# Returns the version, but only the <major>.<minor> 377# @FUNCTION: gcc-version
378# @RETURN: compiler version (major.minor: [3.4].6)
160gcc-version() { 379gcc-version() {
161 echo "$(gcc-fullversion | cut -f1,2 -d.)" 380 _gcc_fullversion '$1.$2' "$@"
162} 381}
163# Returns the Major version 382# @FUNCTION: gcc-major-version
383# @RETURN: major compiler version (major: [3].4.6)
164gcc-major-version() { 384gcc-major-version() {
165 echo "$(gcc-version | cut -f1 -d.)" 385 _gcc_fullversion '$1' "$@"
166} 386}
167# Returns the Minor version 387# @FUNCTION: gcc-minor-version
388# @RETURN: minor compiler version (minor: 3.[4].6)
168gcc-minor-version() { 389gcc-minor-version() {
169 echo "$(gcc-version | cut -f2 -d.)" 390 _gcc_fullversion '$2' "$@"
170} 391}
171# Returns the Micro version 392# @FUNCTION: gcc-micro-version
393# @RETURN: micro compiler version (micro: 3.4.[6])
172gcc-micro-version() { 394gcc-micro-version() {
173 echo "$(gcc-fullversion | cut -f3 -d. | cut -f1 -d-)" 395 _gcc_fullversion '$3' "$@"
174} 396}
175 397
398# Returns the installation directory - internal toolchain
399# function for use by _gcc-specs-exists (for flag-o-matic).
400_gcc-install-dir() {
401 echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\
402 awk '$1=="install:" {print $2}')"
403}
404# Returns true if the indicated specs file exists - internal toolchain
405# function for use by flag-o-matic.
406_gcc-specs-exists() {
407 [[ -f $(_gcc-install-dir)/$1 ]]
408}
409
176# Returns requested gcc specs directive 410# Returns requested gcc specs directive unprocessed - for used by
411# gcc-specs-directive()
177# Note; later specs normally overwrite earlier ones; however if a later 412# Note; later specs normally overwrite earlier ones; however if a later
178# spec starts with '+' then it appends. 413# spec starts with '+' then it appends.
179# gcc -dumpspecs is parsed first, followed by files listed by "gcc -v" 414# gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
180# as "Reading <file>", in order. 415# as "Reading <file>", in order. Strictly speaking, if there's a
416# $(gcc_install_dir)/specs, the built-in specs aren't read, however by
417# the same token anything from 'gcc -dumpspecs' is overridden by
418# the contents of $(gcc_install_dir)/specs so the result is the
419# same either way.
181gcc-specs-directive() { 420_gcc-specs-directive_raw() {
421 local cc=$(tc-getCC)
182 local specfiles=$($(tc-getCC) -v 2>&1 | awk '$1=="Reading" {print $NF}') 422 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
183 $(tc-getCC) -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \ 423 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
184'BEGIN { pspec=""; spec=""; outside=1 } 424'BEGIN { pspec=""; spec=""; outside=1 }
185$1=="*"directive":" { pspec=spec; spec=""; outside=0; next } 425$1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
186 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next } 426 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
187 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next } 427 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
188 { spec=spec $0 } 428 { spec=spec $0 }
189END { print spec }' 429END { print spec }'
190 return 0 430 return 0
191} 431}
192 432
433# Return the requested gcc specs directive, with all included
434# specs expanded.
435# Note, it does not check for inclusion loops, which cause it
436# to never finish - but such loops are invalid for gcc and we're
437# assuming gcc is operational.
438gcc-specs-directive() {
439 local directive subdname subdirective
440 directive="$(_gcc-specs-directive_raw $1)"
441 while [[ ${directive} == *%\(*\)* ]]; do
442 subdname=${directive/*%\(}
443 subdname=${subdname/\)*}
444 subdirective="$(_gcc-specs-directive_raw ${subdname})"
445 directive="${directive//\%(${subdname})/${subdirective}}"
446 done
447 echo "${directive}"
448 return 0
449}
450
193# Returns true if gcc sets relro 451# Returns true if gcc sets relro
194gcc-specs-relro() { 452gcc-specs-relro() {
195 local directive 453 local directive
196 directive=$(gcc-specs-directive link_command) 454 directive=$(gcc-specs-directive link_command)
197 return $([[ ${directive/\{!norelro:} != ${directive} ]]) 455 return $([[ "${directive/\{!norelro:}" != "${directive}" ]])
198} 456}
199# Returns true if gcc sets now 457# Returns true if gcc sets now
200gcc-specs-now() { 458gcc-specs-now() {
201 local directive 459 local directive
202 directive=$(gcc-specs-directive link_command) 460 directive=$(gcc-specs-directive link_command)
203 return $([[ ${directive/\{!nonow:} != ${directive} ]]) 461 return $([[ "${directive/\{!nonow:}" != "${directive}" ]])
204} 462}
205# Returns true if gcc builds PIEs 463# Returns true if gcc builds PIEs
206gcc-specs-pie() { 464gcc-specs-pie() {
207 local directive 465 local directive
208 directive=$(gcc-specs-directive cc1) 466 directive=$(gcc-specs-directive cc1)
209 return $([[ ${directive/\{!nopie:} != ${directive} ]]) 467 return $([[ "${directive/\{!nopie:}" != "${directive}" ]])
210} 468}
211# Returns true if gcc builds with the stack protector 469# Returns true if gcc builds with the stack protector
212gcc-specs-ssp() { 470gcc-specs-ssp() {
213 local directive 471 local directive
214 directive=$(gcc-specs-directive cc1) 472 directive=$(gcc-specs-directive cc1)
215 return $([[ ${directive/\{!fno-stack-protector:} != ${directive} ]]) 473 return $([[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]])
216} 474}
217# Returns true if gcc upgrades fstack-protector to fstack-protector-all 475# Returns true if gcc upgrades fstack-protector to fstack-protector-all
218gcc-specs-ssp-to-all() { 476gcc-specs-ssp-to-all() {
219 local directive 477 local directive
220 directive=$(gcc-specs-directive cc1) 478 directive=$(gcc-specs-directive cc1)
221 return $([[ ${directive/\{!fno-stack-protector-all:} != ${directive} ]]) 479 return $([[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]])
222} 480}
481# Returns true if gcc builds with fno-strict-overflow
482gcc-specs-nostrict() {
483 local directive
484 directive=$(gcc-specs-directive cc1)
485 return $([[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]])
486}
487
488
489# @FUNCTION: gen_usr_ldscript
490# @USAGE: [-a] <list of libs to create linker scripts for>
491# @DESCRIPTION:
492# This function generate linker scripts in /usr/lib for dynamic
493# libs in /lib. This is to fix linking problems when you have
494# the .so in /lib, and the .a in /usr/lib. What happens is that
495# in some cases when linking dynamic, the .a in /usr/lib is used
496# instead of the .so in /lib due to gcc/libtool tweaking ld's
497# library search path. This causes many builds to fail.
498# See bug #4411 for more info.
499#
500# Note that you should in general use the unversioned name of
501# the library (libfoo.so), as ldconfig should usually update it
502# correctly to point to the latest version of the library present.
503gen_usr_ldscript() {
504 local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname)
505 [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/
506
507 tc-is-static-only && return
508
509 # Just make sure it exists
510 dodir /usr/${libdir}
511
512 if [[ $1 == "-a" ]] ; then
513 auto=true
514 shift
515 dodir /${libdir}
516 fi
517
518 # OUTPUT_FORMAT gives hints to the linker as to what binary format
519 # is referenced ... makes multilib saner
520 output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
521 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
522
523 for lib in "$@" ; do
524 local tlib
525 if ${auto} ; then
526 lib="lib${lib}${suffix}"
527 else
528 # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks.
529 # This especially is for AIX where $(get_libname) can return ".a",
530 # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident).
531 [[ -r ${ED}/${libdir}/${lib} ]] || continue
532 #TODO: better die here?
533 fi
534
535 case ${CTARGET:-${CHOST}} in
536 *-darwin*)
537 if ${auto} ; then
538 tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
539 else
540 tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib})
541 fi
542 [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}"
543 tlib=${tlib##*/}
544
545 if ${auto} ; then
546 mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
547 # some install_names are funky: they encode a version
548 if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then
549 mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
550 fi
551 rm -f "${ED}"/${libdir}/${lib}
552 fi
553
554 # Mach-O files have an id, which is like a soname, it tells how
555 # another object linking against this lib should reference it.
556 # Since we moved the lib from usr/lib into lib this reference is
557 # wrong. Hence, we update it here. We don't configure with
558 # libdir=/lib because that messes up libtool files.
559 # Make sure we don't lose the specific version, so just modify the
560 # existing install_name
561 if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then
562 chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it
563 local nowrite=yes
564 fi
565 install_name_tool \
566 -id "${EPREFIX}"/${libdir}/${tlib} \
567 "${ED}"/${libdir}/${tlib} || die "install_name_tool failed"
568 [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}"
569 # Now as we don't use GNU binutils and our linker doesn't
570 # understand linker scripts, just create a symlink.
571 pushd "${ED}/usr/${libdir}" > /dev/null
572 ln -snf "../../${libdir}/${tlib}" "${lib}"
573 popd > /dev/null
574 ;;
575 *-aix*|*-irix*|*64*-hpux*|*-interix*|*-winnt*)
576 if ${auto} ; then
577 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
578 # no way to retrieve soname on these platforms (?)
579 tlib=$(readlink "${ED}"/${libdir}/${lib})
580 tlib=${tlib##*/}
581 if [[ -z ${tlib} ]] ; then
582 # ok, apparently was not a symlink, don't remove it and
583 # just link to it
584 tlib=${lib}
585 else
586 rm -f "${ED}"/${libdir}/${lib}
587 fi
588 else
589 tlib=${lib}
590 fi
591
592 # we don't have GNU binutils on these platforms, so we symlink
593 # instead, which seems to work fine. Keep it relative, otherwise
594 # we break some QA checks in Portage
595 # on interix, the linker scripts would work fine in _most_
596 # situations. if a library links to such a linker script the
597 # absolute path to the correct library is inserted into the binary,
598 # which is wrong, since anybody linking _without_ libtool will miss
599 # some dependencies, since the stupid linker cannot find libraries
600 # hardcoded with absolute paths (as opposed to the loader, which
601 # seems to be able to do this).
602 # this has been seen while building shared-mime-info which needs
603 # libxml2, but links without libtool (and does not add libz to the
604 # command line by itself).
605 pushd "${ED}/usr/${libdir}" > /dev/null
606 ln -snf "../../${libdir}/${tlib}" "${lib}"
607 popd > /dev/null
608 ;;
609 hppa*-hpux*) # PA-RISC 32bit (SOM) only, others (ELF) match *64*-hpux* above.
610 if ${auto} ; then
611 tlib=$(chatr "${ED}"/usr/${libdir}/${lib} | sed -n '/internal name:/{n;s/^ *//;p;q}')
612 [[ -z ${tlib} ]] && tlib=${lib}
613 tlib=${tlib##*/} # 'internal name' can have a path component
614 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
615 # some SONAMEs are funky: they encode a version before the .so
616 if [[ ${tlib} != ${lib}* ]] ; then
617 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
618 fi
619 [[ ${tlib} != ${lib} ]] &&
620 rm -f "${ED}"/${libdir}/${lib}
621 else
622 tlib=$(chatr "${ED}"/${libdir}/${lib} | sed -n '/internal name:/{n;s/^ *//;p;q}')
623 [[ -z ${tlib} ]] && tlib=${lib}
624 tlib=${tlib##*/} # 'internal name' can have a path component
625 fi
626 pushd "${ED}"/usr/${libdir} >/dev/null
627 ln -snf "../../${libdir}/${tlib}" "${lib}"
628 # need the internal name in usr/lib too, to be available at runtime
629 # when linked with /path/to/lib.sl (hardcode_direct_absolute=yes)
630 [[ ${tlib} != ${lib} ]] &&
631 ln -snf "../../${libdir}/${tlib}" "${tlib}"
632 popd >/dev/null
633 ;;
634 *)
635 if ${auto} ; then
636 tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
637 [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}"
638 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
639 # some SONAMEs are funky: they encode a version before the .so
640 if [[ ${tlib} != ${lib}* ]] ; then
641 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
642 fi
643 rm -f "${ED}"/${libdir}/${lib}
644 else
645 tlib=${lib}
646 fi
647 cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
648 /* GNU ld script
649 Since Gentoo has critical dynamic libraries in /lib, and the static versions
650 in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we
651 run into linking problems. This "fake" dynamic lib is a linker script that
652 redirects the linker to the real lib. And yes, this works in the cross-
653 compiling scenario as the sysroot-ed linker will prepend the real path.
654
655 See bug http://bugs.gentoo.org/4411 for more info.
656 */
657 ${output_format}
658 GROUP ( ${EPREFIX}/${libdir}/${tlib} )
659 END_LDSCRIPT
660 ;;
661 esac
662 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
663 done
664}

Legend:
Removed from v.1.48  
changed lines
  Added in v.1.102

  ViewVC Help
Powered by ViewVC 1.1.20