/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Diff of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

Revision 1.22 Revision 1.112
1# Copyright 1999-2004 Gentoo Foundation 1# Copyright 1999-2011 Gentoo Foundation
2# Distributed under the terms of the GNU General Public License v2 2# Distributed under the terms of the GNU General Public License v2
3# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.22 2005/01/11 14:49:02 vapier Exp $ 3# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.112 2012/06/14 03:38:51 vapier Exp $
4# 4
5# @ECLASS: toolchain-funcs.eclass
6# @MAINTAINER:
5# Author: Toolchain Ninjas <ninjas@gentoo.org> 7# Toolchain Ninjas <toolchain@gentoo.org>
6# 8# @BLURB: functions to query common info about the toolchain
7# This eclass contains (or should) functions to get common info 9# @DESCRIPTION:
8# about the toolchain (libc/compiler/binutils/etc...) 10# The toolchain-funcs aims to provide a complete suite of functions
11# for gleaning useful information about the toolchain and to simplify
12# ugly things like cross-compiling and multilib. All of this is done
13# in such a way that you can rely on the function always returning
14# something sane.
9 15
10ECLASS=toolchain-funcs 16if [[ ${___ECLASS_ONCE_TOOLCHAIN_FUNCS} != "recur -_+^+_- spank" ]] ; then
11INHERITED="$INHERITED $ECLASS" 17___ECLASS_ONCE_TOOLCHAIN_FUNCS="recur -_+^+_- spank"
18
19inherit multilib
12 20
13DESCRIPTION="Based on the ${ECLASS} eclass" 21DESCRIPTION="Based on the ${ECLASS} eclass"
14 22
23# tc-getPROG <VAR [search vars]> <default> [tuple]
15tc-getPROG() { 24_tc-getPROG() {
16 local var=$1 25 local tuple=$1
26 local v var vars=$2
17 local prog=$2 27 local prog=$3
18 28
29 var=${vars%% *}
30 for v in ${vars} ; do
19 if [[ -n ${!var} ]] ; then 31 if [[ -n ${!v} ]] ; then
32 export ${var}="${!v}"
20 echo "${!var}" 33 echo "${!v}"
21 return 0 34 return 0
22 fi 35 fi
36 done
23 37
24 if [[ -n ${CHOST} ]] ; then 38 local search=
25 local search=$(type -p "${CHOST}-${prog}") 39 [[ -n $4 ]] && search=$(type -p "$4-${prog}")
40 [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p "${!tuple}-${prog}")
26 [[ -n ${search} ]] && prog=${search##*/} 41 [[ -n ${search} ]] && prog=${search##*/}
27 fi
28 42
29 export ${var}=${prog} 43 export ${var}=${prog}
30 echo "${!var}" 44 echo "${!var}"
31} 45}
46tc-getBUILD_PROG() { _tc-getPROG CBUILD "BUILD_$1 $1_FOR_BUILD HOST$1" "${@:2}"; }
47tc-getPROG() { _tc-getPROG CHOST "$@"; }
32 48
33# Returns the name of the archiver 49# @FUNCTION: tc-getAR
50# @USAGE: [toolchain prefix]
51# @RETURN: name of the archiver
34tc-getAR() { tc-getPROG AR ar; } 52tc-getAR() { tc-getPROG AR ar "$@"; }
35# Returns the name of the assembler 53# @FUNCTION: tc-getAS
54# @USAGE: [toolchain prefix]
55# @RETURN: name of the assembler
36tc-getAS() { tc-getPROG AS as; } 56tc-getAS() { tc-getPROG AS as "$@"; }
57# @FUNCTION: tc-getCC
58# @USAGE: [toolchain prefix]
37# Returns the name of the C compiler 59# @RETURN: name of the C compiler
38tc-getCC() { tc-getPROG CC gcc; } 60tc-getCC() { tc-getPROG CC gcc "$@"; }
61# @FUNCTION: tc-getCPP
62# @USAGE: [toolchain prefix]
63# @RETURN: name of the C preprocessor
64tc-getCPP() { tc-getPROG CPP cpp "$@"; }
65# @FUNCTION: tc-getCXX
66# @USAGE: [toolchain prefix]
39# Returns the name of the C++ compiler 67# @RETURN: name of the C++ compiler
40tc-getCXX() { tc-getPROG CXX g++; } 68tc-getCXX() { tc-getPROG CXX g++ "$@"; }
41# Returns the name of the linker 69# @FUNCTION: tc-getLD
70# @USAGE: [toolchain prefix]
71# @RETURN: name of the linker
42tc-getLD() { tc-getPROG LD ld; } 72tc-getLD() { tc-getPROG LD ld "$@"; }
73# @FUNCTION: tc-getSTRIP
74# @USAGE: [toolchain prefix]
75# @RETURN: name of the strip program
76tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
77# @FUNCTION: tc-getNM
78# @USAGE: [toolchain prefix]
43# Returns the name of the symbol/object thingy 79# @RETURN: name of the symbol/object thingy
44tc-getNM() { tc-getPROG NM nm; } 80tc-getNM() { tc-getPROG NM nm "$@"; }
81# @FUNCTION: tc-getRANLIB
82# @USAGE: [toolchain prefix]
45# Returns the name of the archiver indexer 83# @RETURN: name of the archiver indexer
46tc-getRANLIB() { tc-getPROG RANLIB ranlib; } 84tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
47# Returns the name of the fortran compiler 85# @FUNCTION: tc-getOBJCOPY
86# @USAGE: [toolchain prefix]
87# @RETURN: name of the object copier
88tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; }
89# @FUNCTION: tc-getF77
90# @USAGE: [toolchain prefix]
91# @RETURN: name of the Fortran 77 compiler
48tc-getF77() { tc-getPROG F77 f77; } 92tc-getF77() { tc-getPROG F77 gfortran "$@"; }
93# @FUNCTION: tc-getFC
94# @USAGE: [toolchain prefix]
95# @RETURN: name of the Fortran 90 compiler
96tc-getFC() { tc-getPROG FC gfortran "$@"; }
97# @FUNCTION: tc-getGCJ
98# @USAGE: [toolchain prefix]
49# Returns the name of the java compiler 99# @RETURN: name of the java compiler
50tc-getGCJ() { tc-getPROG GCJ gcj; } 100tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
101# @FUNCTION: tc-getPKG_CONFIG
102# @USAGE: [toolchain prefix]
103# @RETURN: name of the pkg-config tool
104tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; }
105# @FUNCTION: tc-getRC
106# @USAGE: [toolchain prefix]
107# @RETURN: name of the Windows resource compiler
108tc-getRC() { tc-getPROG RC windres "$@"; }
109# @FUNCTION: tc-getDLLWRAP
110# @USAGE: [toolchain prefix]
111# @RETURN: name of the Windows dllwrap utility
112tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; }
51 113
52# Returns the name of the C compiler for build 114# @FUNCTION: tc-getBUILD_AR
53tc-getBUILD_CC() { 115# @USAGE: [toolchain prefix]
54 if [[ -n ${CC_FOR_BUILD} ]] ; then 116# @RETURN: name of the archiver for building binaries to run on the build machine
55 export BUILD_CC=${CC_FOR_BUILD} 117tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; }
56 echo "${CC_FOR_BUILD}" 118# @FUNCTION: tc-getBUILD_AS
57 return 0 119# @USAGE: [toolchain prefix]
58 fi 120# @RETURN: name of the assembler for building binaries to run on the build machine
121tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; }
122# @FUNCTION: tc-getBUILD_CC
123# @USAGE: [toolchain prefix]
124# @RETURN: name of the C compiler for building binaries to run on the build machine
125tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; }
126# @FUNCTION: tc-getBUILD_CPP
127# @USAGE: [toolchain prefix]
128# @RETURN: name of the C preprocessor for building binaries to run on the build machine
129tc-getBUILD_CPP() { tc-getBUILD_PROG CPP cpp "$@"; }
130# @FUNCTION: tc-getBUILD_CXX
131# @USAGE: [toolchain prefix]
132# @RETURN: name of the C++ compiler for building binaries to run on the build machine
133tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; }
134# @FUNCTION: tc-getBUILD_LD
135# @USAGE: [toolchain prefix]
136# @RETURN: name of the linker for building binaries to run on the build machine
137tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; }
138# @FUNCTION: tc-getBUILD_STRIP
139# @USAGE: [toolchain prefix]
140# @RETURN: name of the strip program for building binaries to run on the build machine
141tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; }
142# @FUNCTION: tc-getBUILD_NM
143# @USAGE: [toolchain prefix]
144# @RETURN: name of the symbol/object thingy for building binaries to run on the build machine
145tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; }
146# @FUNCTION: tc-getBUILD_RANLIB
147# @USAGE: [toolchain prefix]
148# @RETURN: name of the archiver indexer for building binaries to run on the build machine
149tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; }
150# @FUNCTION: tc-getBUILD_OBJCOPY
151# @USAGE: [toolchain prefix]
152# @RETURN: name of the object copier for building binaries to run on the build machine
153tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; }
154# @FUNCTION: tc-getBUILD_PKG_CONFIG
155# @USAGE: [toolchain prefix]
156# @RETURN: name of the pkg-config tool for building binaries to run on the build machine
157tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; }
59 158
60 local search= 159# @FUNCTION: tc-export
61 if [[ -n ${CBUILD} ]] ; then 160# @USAGE: <list of toolchain variables>
62 search=$(type -p ${CBUILD}-gcc) 161# @DESCRIPTION:
63 search=${search##*/}
64 else
65 search=gcc
66 fi
67
68 export BUILD_CC=${search}
69 echo "${search}"
70}
71
72# Quick way to export a bunch of vars at once 162# Quick way to export a bunch of compiler vars at once.
73tc-export() { 163tc-export() {
74 local var 164 local var
75 for var in "$@" ; do 165 for var in "$@" ; do
166 [[ $(type -t tc-get${var}) != "function" ]] && die "tc-export: invalid export variable '${var}'"
76 eval tc-get${var} 167 eval tc-get${var} > /dev/null
77 done 168 done
78} 169}
79 170
80# A simple way to see if we're using a cross-compiler ... 171# @FUNCTION: tc-is-cross-compiler
172# @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
81tc-is-cross-compiler() { 173tc-is-cross-compiler() {
82 if [[ -n ${CBUILD} ]] ; then
83 return $([[ ${CBUILD} != ${CHOST} ]]) 174 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
175}
176
177# @FUNCTION: tc-is-softfloat
178# @DESCRIPTION:
179# See if this toolchain is a softfloat based one.
180# @CODE
181# The possible return values:
182# - only: the target is always softfloat (never had fpu)
183# - yes: the target should support softfloat
184# - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention
185# - no: the target doesn't support softfloat
186# @CODE
187# This allows us to react differently where packages accept
188# softfloat flags in the case where support is optional, but
189# rejects softfloat flags where the target always lacks an fpu.
190tc-is-softfloat() {
191 local CTARGET=${CTARGET:-${CHOST}}
192 case ${CTARGET} in
193 bfin*|h8300*)
194 echo "only" ;;
195 *)
196 if [[ ${CTARGET//_/-} == *-softfloat-* ]] ; then
197 echo "yes"
198 elif [[ ${CTARGET//_/-} == *-softfp-* ]] ; then
199 echo "softfp"
200 else
201 echo "no"
84 fi 202 fi
85 return 1 203 ;;
204 esac
86} 205}
87 206
207# @FUNCTION: tc-is-static-only
208# @DESCRIPTION:
209# Return shell true if the target does not support shared libs, shell false
210# otherwise.
211tc-is-static-only() {
212 local host=${CTARGET:-${CHOST}}
88 213
214 # *MiNT doesn't have shared libraries, only platform so far
215 return $([[ ${host} == *-mint* ]])
216}
217
218# @FUNCTION: tc-export_build_env
219# @USAGE: [compiler variables]
220# @DESCRIPTION:
221# Export common build related compiler settings.
222tc-export_build_env() {
223 tc-export "$@"
224 : ${BUILD_CFLAGS:=-O1 -pipe}
225 : ${BUILD_CXXFLAGS:=-O1 -pipe}
226 : ${BUILD_CPPFLAGS:=}
227 : ${BUILD_LDFLAGS:=}
228 export BUILD_{C,CXX,CPP,LD}FLAGS
229}
230
231# @FUNCTION: tc-env_build
232# @USAGE: <command> [command args]
233# @INTERNAL
234# @DESCRIPTION:
235# Setup the compile environment to the build tools and then execute the
236# specified command. We use tc-getBUILD_XX here so that we work with
237# all of the semi-[non-]standard env vars like $BUILD_CC which often
238# the target build system does not check.
239tc-env_build() {
240 tc-export_build_env
241 CFLAGS=${BUILD_CFLAGS} \
242 CXXFLAGS=${BUILD_CXXFLAGS} \
243 CPPFLAGS=${BUILD_CPPFLAGS} \
244 LDFLAGS=${BUILD_LDFLAGS} \
245 AR=$(tc-getBUILD_AR) \
246 AS=$(tc-getBUILD_AS) \
247 CC=$(tc-getBUILD_CC) \
248 CPP=$(tc-getBUILD_CPP) \
249 CXX=$(tc-getBUILD_CXX) \
250 LD=$(tc-getBUILD_LD) \
251 NM=$(tc-getBUILD_NM) \
252 PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \
253 RANLIB=$(tc-getBUILD_RANLIB) \
254 "$@"
255}
256
257# @FUNCTION: econf_build
258# @USAGE: [econf flags]
259# @DESCRIPTION:
260# Sometimes we need to locally build up some tools to run on CBUILD because
261# the package has helper utils which are compiled+executed when compiling.
262# This won't work when cross-compiling as the CHOST is set to a target which
263# we cannot natively execute.
264#
265# For example, the python package will build up a local python binary using
266# a portable build system (configure+make), but then use that binary to run
267# local python scripts to build up other components of the overall python.
268# We cannot rely on the python binary in $PATH as that often times will be
269# a different version, or not even installed in the first place. Instead,
270# we compile the code in a different directory to run on CBUILD, and then
271# use that binary when compiling the main package to run on CHOST.
272#
273# For example, with newer EAPIs, you'd do something like:
274# @CODE
275# src_configure() {
276# ECONF_SOURCE=${S}
277# if tc-is-cross-compiler ; then
278# mkdir "${WORKDIR}"/${CBUILD}
279# pushd "${WORKDIR}"/${CBUILD} >/dev/null
280# econf_build --disable-some-unused-stuff
281# popd >/dev/null
282# fi
283# ... normal build paths ...
284# }
285# src_compile() {
286# if tc-is-cross-compiler ; then
287# pushd "${WORKDIR}"/${CBUILD} >/dev/null
288# emake one-or-two-build-tools
289# ln/mv build-tools to normal build paths in ${S}/
290# popd >/dev/null
291# fi
292# ... normal build paths ...
293# }
294# @CODE
295econf_build() {
296 tc-env_build econf --build=${CBUILD:-${CHOST}} "$@"
297}
298
299# @FUNCTION: tc-has-openmp
300# @USAGE: [toolchain prefix]
301# @DESCRIPTION:
302# See if the toolchain supports OpenMP.
303tc-has-openmp() {
304 local base="${T}/test-tc-openmp"
305 cat <<-EOF > "${base}.c"
306 #include <omp.h>
307 int main() {
308 int nthreads, tid, ret = 0;
309 #pragma omp parallel private(nthreads, tid)
310 {
311 tid = omp_get_thread_num();
312 nthreads = omp_get_num_threads(); ret += tid + nthreads;
313 }
314 return ret;
315 }
316 EOF
317 $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null
318 local ret=$?
319 rm -f "${base}"*
320 return ${ret}
321}
322
323# @FUNCTION: tc-has-tls
324# @USAGE: [-s|-c|-l] [toolchain prefix]
325# @DESCRIPTION:
326# See if the toolchain supports thread local storage (TLS). Use -s to test the
327# compiler, -c to also test the assembler, and -l to also test the C library
328# (the default).
329tc-has-tls() {
330 local base="${T}/test-tc-tls"
331 cat <<-EOF > "${base}.c"
332 int foo(int *i) {
333 static __thread int j = 0;
334 return *i ? j : *i;
335 }
336 EOF
337 local flags
338 case $1 in
339 -s) flags="-S";;
340 -c) flags="-c";;
341 -l) ;;
342 -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";;
343 esac
344 : ${flags:=-fPIC -shared -Wl,-z,defs}
345 [[ $1 == -* ]] && shift
346 $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null
347 local ret=$?
348 rm -f "${base}"*
349 return ${ret}
350}
351
352
89# Parse information from CBUILD/CHOST/CTARGET rather than 353# Parse information from CBUILD/CHOST/CTARGET rather than
90# use external variables from the profile. 354# use external variables from the profile.
91tc-ninja_magic_to_arch() { 355tc-ninja_magic_to_arch() {
92ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; } 356ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
93 357
94 local type=$1 358 local type=$1
95 local host=$2 359 local host=$2
96 [[ -z ${host} ]] && arg=${CHOST} 360 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
97 361
98 case ${host} in 362 case ${host} in
99 alpha*) echo alpha;; 363 alpha*) echo alpha;;
100 x86_64*) ninj x86_64 amd64;;
101 arm*) echo arm;; 364 arm*) echo arm;;
365 avr*) ninj avr32 avr;;
366 bfin*) ninj blackfin bfin;;
367 cris*) echo cris;;
102 hppa*) ninj parisc hppa;; 368 hppa*) ninj parisc hppa;;
369 i?86*)
370 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
371 # trees have been unified into 'x86'.
372 # FreeBSD still uses i386
373 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -lt $(KV_to_int 2.6.24) || ${host} == *freebsd* ]] ; then
374 echo i386
375 else
376 echo x86
377 fi
378 ;;
103 ia64*) echo ia64;; 379 ia64*) echo ia64;;
380 m68*) echo m68k;;
104 mips*) echo mips;; 381 mips*) echo mips;;
105 powerpc64*) echo ppc64;; 382 nios2*) echo nios2;;
106 powerpc*) echo ppc;; 383 nios*) echo nios;;
107 sparc64*) ninj sparc64 sparc;; 384 powerpc*)
108 sparc*) echo sparc;; 385 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
386 # have been unified into simply 'powerpc', but until 2.6.16,
387 # ppc32 is still using ARCH="ppc" as default
388 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] ; then
389 echo powerpc
390 elif [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] ; then
391 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
392 echo powerpc
393 else
394 echo ppc
395 fi
396 elif [[ ${host} == powerpc64* ]] ; then
397 echo ppc64
398 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
399 ninj ppc64 ppc
400 else
401 echo ppc
402 fi
403 ;;
109 s390*) echo s390;; 404 s390*) echo s390;;
110 sh64*) ninj sh64 sh;; 405 sh64*) ninj sh64 sh;;
111 sh*) echo sh;; 406 sh*) echo sh;;
112 i?86*) ninj i386 x86;; 407 sparc64*) ninj sparc64 sparc;;
408 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
409 && ninj sparc64 sparc \
410 || echo sparc
411 ;;
412 vax*) echo vax;;
413 x86_64*freebsd*) echo amd64;;
414 x86_64*)
415 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
416 # trees have been unified into 'x86'.
417 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.24) ]] ; then
418 echo x86
419 else
420 ninj x86_64 amd64
421 fi
422 ;;
423
424 # since our usage of tc-arch is largely concerned with
425 # normalizing inputs for testing ${CTARGET}, let's filter
426 # other cross targets (mingw and such) into the unknown.
427 *) echo unknown;;
428 esac
429}
430# @FUNCTION: tc-arch-kernel
431# @USAGE: [toolchain prefix]
432# @RETURN: name of the kernel arch according to the compiler target
433tc-arch-kernel() {
434 tc-ninja_magic_to_arch kern "$@"
435}
436# @FUNCTION: tc-arch
437# @USAGE: [toolchain prefix]
438# @RETURN: name of the portage arch according to the compiler target
439tc-arch() {
440 tc-ninja_magic_to_arch portage "$@"
441}
442
443tc-endian() {
444 local host=$1
445 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
446 host=${host%%-*}
447
448 case ${host} in
449 alpha*) echo big;;
450 arm*b*) echo big;;
451 arm*) echo little;;
452 cris*) echo little;;
453 hppa*) echo big;;
454 i?86*) echo little;;
455 ia64*) echo little;;
456 m68*) echo big;;
457 mips*l*) echo little;;
458 mips*) echo big;;
459 powerpc*) echo big;;
460 s390*) echo big;;
461 sh*b*) echo big;;
462 sh*) echo little;;
463 sparc*) echo big;;
464 x86_64*) echo little;;
113 *) echo wtf;; 465 *) echo wtf;;
114 esac 466 esac
115} 467}
116tc-arch-kernel() {
117 tc-ninja_magic_to_arch kern $@
118}
119tc-arch() {
120 tc-ninja_magic_to_arch portage $@
121}
122tc-endian() {
123 local host=$1
124 [[ -z ${host} ]] && host=${CHOST}
125 468
126 case ${host} in 469# Internal func. The first argument is the version info to expand.
127 alpha*) echo big;; 470# Query the preprocessor to improve compatibility across different
128 x86_64*) echo little;; 471# compilers rather than maintaining a --version flag matrix. #335943
129 arm*eb-*) echo big;; 472_gcc_fullversion() {
130 arm*) echo little;; 473 local ver="$1"; shift
131 hppa*) echo big;; 474 set -- `$(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__"`
132 ia64*) echo little;; 475 eval echo "$ver"
133 m68k*) echo big;;
134 mips*el-*) echo little;;
135 mips*) echo big;;
136 powerpc*) echo big;;
137 sparc*) echo big;;
138 s390*) echo big;;
139 sh*el-) echo little;;
140 sh*) echo big;;
141 i?86*) echo little;;
142 *) echo wtf;;
143 esac
144} 476}
145 477
146# Returns the version as by `$CC -dumpversion` 478# @FUNCTION: gcc-fullversion
479# @RETURN: compiler version (major.minor.micro: [3.4.6])
147gcc-fullversion() { 480gcc-fullversion() {
148 echo "$($(tc-getCC) -dumpversion)" 481 _gcc_fullversion '$1.$2.$3' "$@"
149} 482}
150# Returns the version, but only the <major>.<minor> 483# @FUNCTION: gcc-version
484# @RETURN: compiler version (major.minor: [3.4].6)
151gcc-version() { 485gcc-version() {
152 echo "$(gcc-fullversion | cut -f1,2 -d.)" 486 _gcc_fullversion '$1.$2' "$@"
153} 487}
154# Returns the Major version 488# @FUNCTION: gcc-major-version
489# @RETURN: major compiler version (major: [3].4.6)
155gcc-major-version() { 490gcc-major-version() {
156 echo "$(gcc-version | cut -f1 -d.)" 491 _gcc_fullversion '$1' "$@"
157} 492}
158# Returns the Minor version 493# @FUNCTION: gcc-minor-version
494# @RETURN: minor compiler version (minor: 3.[4].6)
159gcc-minor-version() { 495gcc-minor-version() {
160 echo "$(gcc-version | cut -f2 -d.)" 496 _gcc_fullversion '$2' "$@"
161} 497}
162# Returns the Micro version 498# @FUNCTION: gcc-micro-version
499# @RETURN: micro compiler version (micro: 3.4.[6])
163gcc-micro-version() { 500gcc-micro-version() {
164 echo "$(gcc-fullversion | cut -f3 -d.)" 501 _gcc_fullversion '$3' "$@"
165} 502}
503
504# Returns the installation directory - internal toolchain
505# function for use by _gcc-specs-exists (for flag-o-matic).
506_gcc-install-dir() {
507 echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\
508 awk '$1=="install:" {print $2}')"
509}
510# Returns true if the indicated specs file exists - internal toolchain
511# function for use by flag-o-matic.
512_gcc-specs-exists() {
513 [[ -f $(_gcc-install-dir)/$1 ]]
514}
515
516# Returns requested gcc specs directive unprocessed - for used by
517# gcc-specs-directive()
518# Note; later specs normally overwrite earlier ones; however if a later
519# spec starts with '+' then it appends.
520# gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
521# as "Reading <file>", in order. Strictly speaking, if there's a
522# $(gcc_install_dir)/specs, the built-in specs aren't read, however by
523# the same token anything from 'gcc -dumpspecs' is overridden by
524# the contents of $(gcc_install_dir)/specs so the result is the
525# same either way.
526_gcc-specs-directive_raw() {
527 local cc=$(tc-getCC)
528 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
529 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
530'BEGIN { pspec=""; spec=""; outside=1 }
531$1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
532 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
533 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
534 { spec=spec $0 }
535END { print spec }'
536 return 0
537}
538
539# Return the requested gcc specs directive, with all included
540# specs expanded.
541# Note, it does not check for inclusion loops, which cause it
542# to never finish - but such loops are invalid for gcc and we're
543# assuming gcc is operational.
544gcc-specs-directive() {
545 local directive subdname subdirective
546 directive="$(_gcc-specs-directive_raw $1)"
547 while [[ ${directive} == *%\(*\)* ]]; do
548 subdname=${directive/*%\(}
549 subdname=${subdname/\)*}
550 subdirective="$(_gcc-specs-directive_raw ${subdname})"
551 directive="${directive//\%(${subdname})/${subdirective}}"
552 done
553 echo "${directive}"
554 return 0
555}
556
557# Returns true if gcc sets relro
558gcc-specs-relro() {
559 local directive
560 directive=$(gcc-specs-directive link_command)
561 return $([[ "${directive/\{!norelro:}" != "${directive}" ]])
562}
563# Returns true if gcc sets now
564gcc-specs-now() {
565 local directive
566 directive=$(gcc-specs-directive link_command)
567 return $([[ "${directive/\{!nonow:}" != "${directive}" ]])
568}
569# Returns true if gcc builds PIEs
570gcc-specs-pie() {
571 local directive
572 directive=$(gcc-specs-directive cc1)
573 return $([[ "${directive/\{!nopie:}" != "${directive}" ]])
574}
575# Returns true if gcc builds with the stack protector
576gcc-specs-ssp() {
577 local directive
578 directive=$(gcc-specs-directive cc1)
579 return $([[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]])
580}
581# Returns true if gcc upgrades fstack-protector to fstack-protector-all
582gcc-specs-ssp-to-all() {
583 local directive
584 directive=$(gcc-specs-directive cc1)
585 return $([[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]])
586}
587# Returns true if gcc builds with fno-strict-overflow
588gcc-specs-nostrict() {
589 local directive
590 directive=$(gcc-specs-directive cc1)
591 return $([[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]])
592}
593
594
595# @FUNCTION: gen_usr_ldscript
596# @USAGE: [-a] <list of libs to create linker scripts for>
597# @DESCRIPTION:
598# This function generate linker scripts in /usr/lib for dynamic
599# libs in /lib. This is to fix linking problems when you have
600# the .so in /lib, and the .a in /usr/lib. What happens is that
601# in some cases when linking dynamic, the .a in /usr/lib is used
602# instead of the .so in /lib due to gcc/libtool tweaking ld's
603# library search path. This causes many builds to fail.
604# See bug #4411 for more info.
605#
606# Note that you should in general use the unversioned name of
607# the library (libfoo.so), as ldconfig should usually update it
608# correctly to point to the latest version of the library present.
609gen_usr_ldscript() {
610 local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname)
611 [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/
612
613 tc-is-static-only && return
614
615 # Just make sure it exists
616 dodir /usr/${libdir}
617
618 if [[ $1 == "-a" ]] ; then
619 auto=true
620 shift
621 dodir /${libdir}
622 fi
623
624 # OUTPUT_FORMAT gives hints to the linker as to what binary format
625 # is referenced ... makes multilib saner
626 output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
627 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
628
629 for lib in "$@" ; do
630 local tlib
631 if ${auto} ; then
632 lib="lib${lib}${suffix}"
633 else
634 # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks.
635 # This especially is for AIX where $(get_libname) can return ".a",
636 # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident).
637 [[ -r ${ED}/${libdir}/${lib} ]] || continue
638 #TODO: better die here?
639 fi
640
641 case ${CTARGET:-${CHOST}} in
642 *-darwin*)
643 if ${auto} ; then
644 tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
645 else
646 tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib})
647 fi
648 [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}"
649 tlib=${tlib##*/}
650
651 if ${auto} ; then
652 mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
653 # some install_names are funky: they encode a version
654 if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then
655 mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
656 fi
657 rm -f "${ED}"/${libdir}/${lib}
658 fi
659
660 # Mach-O files have an id, which is like a soname, it tells how
661 # another object linking against this lib should reference it.
662 # Since we moved the lib from usr/lib into lib this reference is
663 # wrong. Hence, we update it here. We don't configure with
664 # libdir=/lib because that messes up libtool files.
665 # Make sure we don't lose the specific version, so just modify the
666 # existing install_name
667 if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then
668 chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it
669 local nowrite=yes
670 fi
671 install_name_tool \
672 -id "${EPREFIX}"/${libdir}/${tlib} \
673 "${ED}"/${libdir}/${tlib} || die "install_name_tool failed"
674 [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}"
675 # Now as we don't use GNU binutils and our linker doesn't
676 # understand linker scripts, just create a symlink.
677 pushd "${ED}/usr/${libdir}" > /dev/null
678 ln -snf "../../${libdir}/${tlib}" "${lib}"
679 popd > /dev/null
680 ;;
681 *-aix*|*-irix*|*64*-hpux*|*-interix*|*-winnt*)
682 if ${auto} ; then
683 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
684 # no way to retrieve soname on these platforms (?)
685 tlib=$(readlink "${ED}"/${libdir}/${lib})
686 tlib=${tlib##*/}
687 if [[ -z ${tlib} ]] ; then
688 # ok, apparently was not a symlink, don't remove it and
689 # just link to it
690 tlib=${lib}
691 else
692 rm -f "${ED}"/${libdir}/${lib}
693 fi
694 else
695 tlib=${lib}
696 fi
697
698 # we don't have GNU binutils on these platforms, so we symlink
699 # instead, which seems to work fine. Keep it relative, otherwise
700 # we break some QA checks in Portage
701 # on interix, the linker scripts would work fine in _most_
702 # situations. if a library links to such a linker script the
703 # absolute path to the correct library is inserted into the binary,
704 # which is wrong, since anybody linking _without_ libtool will miss
705 # some dependencies, since the stupid linker cannot find libraries
706 # hardcoded with absolute paths (as opposed to the loader, which
707 # seems to be able to do this).
708 # this has been seen while building shared-mime-info which needs
709 # libxml2, but links without libtool (and does not add libz to the
710 # command line by itself).
711 pushd "${ED}/usr/${libdir}" > /dev/null
712 ln -snf "../../${libdir}/${tlib}" "${lib}"
713 popd > /dev/null
714 ;;
715 hppa*-hpux*) # PA-RISC 32bit (SOM) only, others (ELF) match *64*-hpux* above.
716 if ${auto} ; then
717 tlib=$(chatr "${ED}"/usr/${libdir}/${lib} | sed -n '/internal name:/{n;s/^ *//;p;q}')
718 [[ -z ${tlib} ]] && tlib=${lib}
719 tlib=${tlib##*/} # 'internal name' can have a path component
720 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
721 # some SONAMEs are funky: they encode a version before the .so
722 if [[ ${tlib} != ${lib}* ]] ; then
723 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
724 fi
725 [[ ${tlib} != ${lib} ]] &&
726 rm -f "${ED}"/${libdir}/${lib}
727 else
728 tlib=$(chatr "${ED}"/${libdir}/${lib} | sed -n '/internal name:/{n;s/^ *//;p;q}')
729 [[ -z ${tlib} ]] && tlib=${lib}
730 tlib=${tlib##*/} # 'internal name' can have a path component
731 fi
732 pushd "${ED}"/usr/${libdir} >/dev/null
733 ln -snf "../../${libdir}/${tlib}" "${lib}"
734 # need the internal name in usr/lib too, to be available at runtime
735 # when linked with /path/to/lib.sl (hardcode_direct_absolute=yes)
736 [[ ${tlib} != ${lib} ]] &&
737 ln -snf "../../${libdir}/${tlib}" "${tlib}"
738 popd >/dev/null
739 ;;
740 *)
741 if ${auto} ; then
742 tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
743 [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}"
744 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
745 # some SONAMEs are funky: they encode a version before the .so
746 if [[ ${tlib} != ${lib}* ]] ; then
747 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
748 fi
749 rm -f "${ED}"/${libdir}/${lib}
750 else
751 tlib=${lib}
752 fi
753 cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
754 /* GNU ld script
755 Since Gentoo has critical dynamic libraries in /lib, and the static versions
756 in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we
757 run into linking problems. This "fake" dynamic lib is a linker script that
758 redirects the linker to the real lib. And yes, this works in the cross-
759 compiling scenario as the sysroot-ed linker will prepend the real path.
760
761 See bug http://bugs.gentoo.org/4411 for more info.
762 */
763 ${output_format}
764 GROUP ( ${EPREFIX}/${libdir}/${tlib} )
765 END_LDSCRIPT
766 ;;
767 esac
768 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
769 done
770}
771
772fi

Legend:
Removed from v.1.22  
changed lines
  Added in v.1.112

  ViewVC Help
Powered by ViewVC 1.1.20