/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Contents of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.118 - (show annotations) (download)
Thu Sep 27 19:34:28 2012 UTC (18 months, 3 weeks ago) by axs
Branch: MAIN
Changes since 1.117: +4 -1 lines
Fixed tc-ninja_magic_to_arch() to also use KV_FULL and fail if no kernel version specified, bug 432390

1 # Copyright 1999-2012 Gentoo Foundation
2 # Distributed under the terms of the GNU General Public License v2
3 # $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.117 2012/09/15 16:16:53 zmedico Exp $
4
5 # @ECLASS: toolchain-funcs.eclass
6 # @MAINTAINER:
7 # Toolchain Ninjas <toolchain@gentoo.org>
8 # @BLURB: functions to query common info about the toolchain
9 # @DESCRIPTION:
10 # The toolchain-funcs aims to provide a complete suite of functions
11 # for gleaning useful information about the toolchain and to simplify
12 # ugly things like cross-compiling and multilib. All of this is done
13 # in such a way that you can rely on the function always returning
14 # something sane.
15
16 if [[ ${___ECLASS_ONCE_TOOLCHAIN_FUNCS} != "recur -_+^+_- spank" ]] ; then
17 ___ECLASS_ONCE_TOOLCHAIN_FUNCS="recur -_+^+_- spank"
18
19 inherit multilib
20
21 # tc-getPROG <VAR [search vars]> <default> [tuple]
22 _tc-getPROG() {
23 local tuple=$1
24 local v var vars=$2
25 local prog=$3
26
27 var=${vars%% *}
28 for v in ${vars} ; do
29 if [[ -n ${!v} ]] ; then
30 export ${var}="${!v}"
31 echo "${!v}"
32 return 0
33 fi
34 done
35
36 local search=
37 [[ -n $4 ]] && search=$(type -p "$4-${prog}")
38 [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p "${!tuple}-${prog}")
39 [[ -n ${search} ]] && prog=${search##*/}
40
41 export ${var}=${prog}
42 echo "${!var}"
43 }
44 tc-getBUILD_PROG() { _tc-getPROG CBUILD "BUILD_$1 $1_FOR_BUILD HOST$1" "${@:2}"; }
45 tc-getPROG() { _tc-getPROG CHOST "$@"; }
46
47 # @FUNCTION: tc-getAR
48 # @USAGE: [toolchain prefix]
49 # @RETURN: name of the archiver
50 tc-getAR() { tc-getPROG AR ar "$@"; }
51 # @FUNCTION: tc-getAS
52 # @USAGE: [toolchain prefix]
53 # @RETURN: name of the assembler
54 tc-getAS() { tc-getPROG AS as "$@"; }
55 # @FUNCTION: tc-getCC
56 # @USAGE: [toolchain prefix]
57 # @RETURN: name of the C compiler
58 tc-getCC() { tc-getPROG CC gcc "$@"; }
59 # @FUNCTION: tc-getCPP
60 # @USAGE: [toolchain prefix]
61 # @RETURN: name of the C preprocessor
62 tc-getCPP() { tc-getPROG CPP cpp "$@"; }
63 # @FUNCTION: tc-getCXX
64 # @USAGE: [toolchain prefix]
65 # @RETURN: name of the C++ compiler
66 tc-getCXX() { tc-getPROG CXX g++ "$@"; }
67 # @FUNCTION: tc-getLD
68 # @USAGE: [toolchain prefix]
69 # @RETURN: name of the linker
70 tc-getLD() { tc-getPROG LD ld "$@"; }
71 # @FUNCTION: tc-getSTRIP
72 # @USAGE: [toolchain prefix]
73 # @RETURN: name of the strip program
74 tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
75 # @FUNCTION: tc-getNM
76 # @USAGE: [toolchain prefix]
77 # @RETURN: name of the symbol/object thingy
78 tc-getNM() { tc-getPROG NM nm "$@"; }
79 # @FUNCTION: tc-getRANLIB
80 # @USAGE: [toolchain prefix]
81 # @RETURN: name of the archiver indexer
82 tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
83 # @FUNCTION: tc-getOBJCOPY
84 # @USAGE: [toolchain prefix]
85 # @RETURN: name of the object copier
86 tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; }
87 # @FUNCTION: tc-getF77
88 # @USAGE: [toolchain prefix]
89 # @RETURN: name of the Fortran 77 compiler
90 tc-getF77() { tc-getPROG F77 gfortran "$@"; }
91 # @FUNCTION: tc-getFC
92 # @USAGE: [toolchain prefix]
93 # @RETURN: name of the Fortran 90 compiler
94 tc-getFC() { tc-getPROG FC gfortran "$@"; }
95 # @FUNCTION: tc-getGCJ
96 # @USAGE: [toolchain prefix]
97 # @RETURN: name of the java compiler
98 tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
99 # @FUNCTION: tc-getPKG_CONFIG
100 # @USAGE: [toolchain prefix]
101 # @RETURN: name of the pkg-config tool
102 tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; }
103 # @FUNCTION: tc-getRC
104 # @USAGE: [toolchain prefix]
105 # @RETURN: name of the Windows resource compiler
106 tc-getRC() { tc-getPROG RC windres "$@"; }
107 # @FUNCTION: tc-getDLLWRAP
108 # @USAGE: [toolchain prefix]
109 # @RETURN: name of the Windows dllwrap utility
110 tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; }
111
112 # @FUNCTION: tc-getBUILD_AR
113 # @USAGE: [toolchain prefix]
114 # @RETURN: name of the archiver for building binaries to run on the build machine
115 tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; }
116 # @FUNCTION: tc-getBUILD_AS
117 # @USAGE: [toolchain prefix]
118 # @RETURN: name of the assembler for building binaries to run on the build machine
119 tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; }
120 # @FUNCTION: tc-getBUILD_CC
121 # @USAGE: [toolchain prefix]
122 # @RETURN: name of the C compiler for building binaries to run on the build machine
123 tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; }
124 # @FUNCTION: tc-getBUILD_CPP
125 # @USAGE: [toolchain prefix]
126 # @RETURN: name of the C preprocessor for building binaries to run on the build machine
127 tc-getBUILD_CPP() { tc-getBUILD_PROG CPP cpp "$@"; }
128 # @FUNCTION: tc-getBUILD_CXX
129 # @USAGE: [toolchain prefix]
130 # @RETURN: name of the C++ compiler for building binaries to run on the build machine
131 tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; }
132 # @FUNCTION: tc-getBUILD_LD
133 # @USAGE: [toolchain prefix]
134 # @RETURN: name of the linker for building binaries to run on the build machine
135 tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; }
136 # @FUNCTION: tc-getBUILD_STRIP
137 # @USAGE: [toolchain prefix]
138 # @RETURN: name of the strip program for building binaries to run on the build machine
139 tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; }
140 # @FUNCTION: tc-getBUILD_NM
141 # @USAGE: [toolchain prefix]
142 # @RETURN: name of the symbol/object thingy for building binaries to run on the build machine
143 tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; }
144 # @FUNCTION: tc-getBUILD_RANLIB
145 # @USAGE: [toolchain prefix]
146 # @RETURN: name of the archiver indexer for building binaries to run on the build machine
147 tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; }
148 # @FUNCTION: tc-getBUILD_OBJCOPY
149 # @USAGE: [toolchain prefix]
150 # @RETURN: name of the object copier for building binaries to run on the build machine
151 tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; }
152 # @FUNCTION: tc-getBUILD_PKG_CONFIG
153 # @USAGE: [toolchain prefix]
154 # @RETURN: name of the pkg-config tool for building binaries to run on the build machine
155 tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; }
156
157 # @FUNCTION: tc-export
158 # @USAGE: <list of toolchain variables>
159 # @DESCRIPTION:
160 # Quick way to export a bunch of compiler vars at once.
161 tc-export() {
162 local var
163 for var in "$@" ; do
164 [[ $(type -t tc-get${var}) != "function" ]] && die "tc-export: invalid export variable '${var}'"
165 eval tc-get${var} > /dev/null
166 done
167 }
168
169 # @FUNCTION: tc-is-cross-compiler
170 # @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
171 tc-is-cross-compiler() {
172 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
173 }
174
175 # @FUNCTION: tc-is-softfloat
176 # @DESCRIPTION:
177 # See if this toolchain is a softfloat based one.
178 # @CODE
179 # The possible return values:
180 # - only: the target is always softfloat (never had fpu)
181 # - yes: the target should support softfloat
182 # - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention
183 # - no: the target doesn't support softfloat
184 # @CODE
185 # This allows us to react differently where packages accept
186 # softfloat flags in the case where support is optional, but
187 # rejects softfloat flags where the target always lacks an fpu.
188 tc-is-softfloat() {
189 local CTARGET=${CTARGET:-${CHOST}}
190 case ${CTARGET} in
191 bfin*|h8300*)
192 echo "only" ;;
193 *)
194 if [[ ${CTARGET//_/-} == *-softfloat-* ]] ; then
195 echo "yes"
196 elif [[ ${CTARGET//_/-} == *-softfp-* ]] ; then
197 echo "softfp"
198 else
199 echo "no"
200 fi
201 ;;
202 esac
203 }
204
205 # @FUNCTION: tc-is-static-only
206 # @DESCRIPTION:
207 # Return shell true if the target does not support shared libs, shell false
208 # otherwise.
209 tc-is-static-only() {
210 local host=${CTARGET:-${CHOST}}
211
212 # *MiNT doesn't have shared libraries, only platform so far
213 return $([[ ${host} == *-mint* ]])
214 }
215
216 # @FUNCTION: tc-export_build_env
217 # @USAGE: [compiler variables]
218 # @DESCRIPTION:
219 # Export common build related compiler settings.
220 tc-export_build_env() {
221 tc-export "$@"
222 : ${BUILD_CFLAGS:=-O1 -pipe}
223 : ${BUILD_CXXFLAGS:=-O1 -pipe}
224 : ${BUILD_CPPFLAGS:=}
225 : ${BUILD_LDFLAGS:=}
226 export BUILD_{C,CXX,CPP,LD}FLAGS
227 }
228
229 # @FUNCTION: tc-env_build
230 # @USAGE: <command> [command args]
231 # @INTERNAL
232 # @DESCRIPTION:
233 # Setup the compile environment to the build tools and then execute the
234 # specified command. We use tc-getBUILD_XX here so that we work with
235 # all of the semi-[non-]standard env vars like $BUILD_CC which often
236 # the target build system does not check.
237 tc-env_build() {
238 tc-export_build_env
239 CFLAGS=${BUILD_CFLAGS} \
240 CXXFLAGS=${BUILD_CXXFLAGS} \
241 CPPFLAGS=${BUILD_CPPFLAGS} \
242 LDFLAGS=${BUILD_LDFLAGS} \
243 AR=$(tc-getBUILD_AR) \
244 AS=$(tc-getBUILD_AS) \
245 CC=$(tc-getBUILD_CC) \
246 CPP=$(tc-getBUILD_CPP) \
247 CXX=$(tc-getBUILD_CXX) \
248 LD=$(tc-getBUILD_LD) \
249 NM=$(tc-getBUILD_NM) \
250 PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \
251 RANLIB=$(tc-getBUILD_RANLIB) \
252 "$@"
253 }
254
255 # @FUNCTION: econf_build
256 # @USAGE: [econf flags]
257 # @DESCRIPTION:
258 # Sometimes we need to locally build up some tools to run on CBUILD because
259 # the package has helper utils which are compiled+executed when compiling.
260 # This won't work when cross-compiling as the CHOST is set to a target which
261 # we cannot natively execute.
262 #
263 # For example, the python package will build up a local python binary using
264 # a portable build system (configure+make), but then use that binary to run
265 # local python scripts to build up other components of the overall python.
266 # We cannot rely on the python binary in $PATH as that often times will be
267 # a different version, or not even installed in the first place. Instead,
268 # we compile the code in a different directory to run on CBUILD, and then
269 # use that binary when compiling the main package to run on CHOST.
270 #
271 # For example, with newer EAPIs, you'd do something like:
272 # @CODE
273 # src_configure() {
274 # ECONF_SOURCE=${S}
275 # if tc-is-cross-compiler ; then
276 # mkdir "${WORKDIR}"/${CBUILD}
277 # pushd "${WORKDIR}"/${CBUILD} >/dev/null
278 # econf_build --disable-some-unused-stuff
279 # popd >/dev/null
280 # fi
281 # ... normal build paths ...
282 # }
283 # src_compile() {
284 # if tc-is-cross-compiler ; then
285 # pushd "${WORKDIR}"/${CBUILD} >/dev/null
286 # emake one-or-two-build-tools
287 # ln/mv build-tools to normal build paths in ${S}/
288 # popd >/dev/null
289 # fi
290 # ... normal build paths ...
291 # }
292 # @CODE
293 econf_build() {
294 tc-env_build econf --build=${CBUILD:-${CHOST}} "$@"
295 }
296
297 # @FUNCTION: tc-has-openmp
298 # @USAGE: [toolchain prefix]
299 # @DESCRIPTION:
300 # See if the toolchain supports OpenMP.
301 tc-has-openmp() {
302 local base="${T}/test-tc-openmp"
303 cat <<-EOF > "${base}.c"
304 #include <omp.h>
305 int main() {
306 int nthreads, tid, ret = 0;
307 #pragma omp parallel private(nthreads, tid)
308 {
309 tid = omp_get_thread_num();
310 nthreads = omp_get_num_threads(); ret += tid + nthreads;
311 }
312 return ret;
313 }
314 EOF
315 $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null
316 local ret=$?
317 rm -f "${base}"*
318 return ${ret}
319 }
320
321 # @FUNCTION: tc-has-tls
322 # @USAGE: [-s|-c|-l] [toolchain prefix]
323 # @DESCRIPTION:
324 # See if the toolchain supports thread local storage (TLS). Use -s to test the
325 # compiler, -c to also test the assembler, and -l to also test the C library
326 # (the default).
327 tc-has-tls() {
328 local base="${T}/test-tc-tls"
329 cat <<-EOF > "${base}.c"
330 int foo(int *i) {
331 static __thread int j = 0;
332 return *i ? j : *i;
333 }
334 EOF
335 local flags
336 case $1 in
337 -s) flags="-S";;
338 -c) flags="-c";;
339 -l) ;;
340 -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";;
341 esac
342 : ${flags:=-fPIC -shared -Wl,-z,defs}
343 [[ $1 == -* ]] && shift
344 $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null
345 local ret=$?
346 rm -f "${base}"*
347 return ${ret}
348 }
349
350
351 # Parse information from CBUILD/CHOST/CTARGET rather than
352 # use external variables from the profile.
353 tc-ninja_magic_to_arch() {
354 ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
355
356 local type=$1
357 local host=$2
358 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
359
360 local KV=${KV:-${KV_FULL}}
361 [[ -z ${KV} ]] && die "toolchain-funcs.eclass: Kernel version could not be determined, please inherit kernel-2 or linux-info"
362
363 case ${host} in
364 aarch64*) ninj aarch64 arm;;
365 alpha*) echo alpha;;
366 arm*) echo arm;;
367 avr*) ninj avr32 avr;;
368 bfin*) ninj blackfin bfin;;
369 cris*) echo cris;;
370 hppa*) ninj parisc hppa;;
371 i?86*)
372 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
373 # trees have been unified into 'x86'.
374 # FreeBSD still uses i386
375 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -lt $(KV_to_int 2.6.24) || ${host} == *freebsd* ]] ; then
376 echo i386
377 else
378 echo x86
379 fi
380 ;;
381 ia64*) echo ia64;;
382 m68*) echo m68k;;
383 mips*) echo mips;;
384 nios2*) echo nios2;;
385 nios*) echo nios;;
386 powerpc*)
387 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
388 # have been unified into simply 'powerpc', but until 2.6.16,
389 # ppc32 is still using ARCH="ppc" as default
390 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] ; then
391 echo powerpc
392 elif [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] ; then
393 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
394 echo powerpc
395 else
396 echo ppc
397 fi
398 elif [[ ${host} == powerpc64* ]] ; then
399 echo ppc64
400 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
401 ninj ppc64 ppc
402 else
403 echo ppc
404 fi
405 ;;
406 s390*) echo s390;;
407 sh64*) ninj sh64 sh;;
408 sh*) echo sh;;
409 sparc64*) ninj sparc64 sparc;;
410 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
411 && ninj sparc64 sparc \
412 || echo sparc
413 ;;
414 vax*) echo vax;;
415 x86_64*freebsd*) echo amd64;;
416 x86_64*)
417 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
418 # trees have been unified into 'x86'.
419 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.24) ]] ; then
420 echo x86
421 else
422 ninj x86_64 amd64
423 fi
424 ;;
425
426 # since our usage of tc-arch is largely concerned with
427 # normalizing inputs for testing ${CTARGET}, let's filter
428 # other cross targets (mingw and such) into the unknown.
429 *) echo unknown;;
430 esac
431 }
432 # @FUNCTION: tc-arch-kernel
433 # @USAGE: [toolchain prefix]
434 # @RETURN: name of the kernel arch according to the compiler target
435 tc-arch-kernel() {
436 tc-ninja_magic_to_arch kern "$@"
437 }
438 # @FUNCTION: tc-arch
439 # @USAGE: [toolchain prefix]
440 # @RETURN: name of the portage arch according to the compiler target
441 tc-arch() {
442 tc-ninja_magic_to_arch portage "$@"
443 }
444
445 tc-endian() {
446 local host=$1
447 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
448 host=${host%%-*}
449
450 case ${host} in
451 aarch64*be) echo big;;
452 aarch64) echo little;;
453 alpha*) echo big;;
454 arm*b*) echo big;;
455 arm*) echo little;;
456 cris*) echo little;;
457 hppa*) echo big;;
458 i?86*) echo little;;
459 ia64*) echo little;;
460 m68*) echo big;;
461 mips*l*) echo little;;
462 mips*) echo big;;
463 powerpc*) echo big;;
464 s390*) echo big;;
465 sh*b*) echo big;;
466 sh*) echo little;;
467 sparc*) echo big;;
468 x86_64*) echo little;;
469 *) echo wtf;;
470 esac
471 }
472
473 # Internal func. The first argument is the version info to expand.
474 # Query the preprocessor to improve compatibility across different
475 # compilers rather than maintaining a --version flag matrix. #335943
476 _gcc_fullversion() {
477 local ver="$1"; shift
478 set -- `$(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__"`
479 eval echo "$ver"
480 }
481
482 # @FUNCTION: gcc-fullversion
483 # @RETURN: compiler version (major.minor.micro: [3.4.6])
484 gcc-fullversion() {
485 _gcc_fullversion '$1.$2.$3' "$@"
486 }
487 # @FUNCTION: gcc-version
488 # @RETURN: compiler version (major.minor: [3.4].6)
489 gcc-version() {
490 _gcc_fullversion '$1.$2' "$@"
491 }
492 # @FUNCTION: gcc-major-version
493 # @RETURN: major compiler version (major: [3].4.6)
494 gcc-major-version() {
495 _gcc_fullversion '$1' "$@"
496 }
497 # @FUNCTION: gcc-minor-version
498 # @RETURN: minor compiler version (minor: 3.[4].6)
499 gcc-minor-version() {
500 _gcc_fullversion '$2' "$@"
501 }
502 # @FUNCTION: gcc-micro-version
503 # @RETURN: micro compiler version (micro: 3.4.[6])
504 gcc-micro-version() {
505 _gcc_fullversion '$3' "$@"
506 }
507
508 # Returns the installation directory - internal toolchain
509 # function for use by _gcc-specs-exists (for flag-o-matic).
510 _gcc-install-dir() {
511 echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\
512 awk '$1=="install:" {print $2}')"
513 }
514 # Returns true if the indicated specs file exists - internal toolchain
515 # function for use by flag-o-matic.
516 _gcc-specs-exists() {
517 [[ -f $(_gcc-install-dir)/$1 ]]
518 }
519
520 # Returns requested gcc specs directive unprocessed - for used by
521 # gcc-specs-directive()
522 # Note; later specs normally overwrite earlier ones; however if a later
523 # spec starts with '+' then it appends.
524 # gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
525 # as "Reading <file>", in order. Strictly speaking, if there's a
526 # $(gcc_install_dir)/specs, the built-in specs aren't read, however by
527 # the same token anything from 'gcc -dumpspecs' is overridden by
528 # the contents of $(gcc_install_dir)/specs so the result is the
529 # same either way.
530 _gcc-specs-directive_raw() {
531 local cc=$(tc-getCC)
532 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
533 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
534 'BEGIN { pspec=""; spec=""; outside=1 }
535 $1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
536 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
537 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
538 { spec=spec $0 }
539 END { print spec }'
540 return 0
541 }
542
543 # Return the requested gcc specs directive, with all included
544 # specs expanded.
545 # Note, it does not check for inclusion loops, which cause it
546 # to never finish - but such loops are invalid for gcc and we're
547 # assuming gcc is operational.
548 gcc-specs-directive() {
549 local directive subdname subdirective
550 directive="$(_gcc-specs-directive_raw $1)"
551 while [[ ${directive} == *%\(*\)* ]]; do
552 subdname=${directive/*%\(}
553 subdname=${subdname/\)*}
554 subdirective="$(_gcc-specs-directive_raw ${subdname})"
555 directive="${directive//\%(${subdname})/${subdirective}}"
556 done
557 echo "${directive}"
558 return 0
559 }
560
561 # Returns true if gcc sets relro
562 gcc-specs-relro() {
563 local directive
564 directive=$(gcc-specs-directive link_command)
565 return $([[ "${directive/\{!norelro:}" != "${directive}" ]])
566 }
567 # Returns true if gcc sets now
568 gcc-specs-now() {
569 local directive
570 directive=$(gcc-specs-directive link_command)
571 return $([[ "${directive/\{!nonow:}" != "${directive}" ]])
572 }
573 # Returns true if gcc builds PIEs
574 gcc-specs-pie() {
575 local directive
576 directive=$(gcc-specs-directive cc1)
577 return $([[ "${directive/\{!nopie:}" != "${directive}" ]])
578 }
579 # Returns true if gcc builds with the stack protector
580 gcc-specs-ssp() {
581 local directive
582 directive=$(gcc-specs-directive cc1)
583 return $([[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]])
584 }
585 # Returns true if gcc upgrades fstack-protector to fstack-protector-all
586 gcc-specs-ssp-to-all() {
587 local directive
588 directive=$(gcc-specs-directive cc1)
589 return $([[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]])
590 }
591 # Returns true if gcc builds with fno-strict-overflow
592 gcc-specs-nostrict() {
593 local directive
594 directive=$(gcc-specs-directive cc1)
595 return $([[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]])
596 }
597
598
599 # @FUNCTION: gen_usr_ldscript
600 # @USAGE: [-a] <list of libs to create linker scripts for>
601 # @DESCRIPTION:
602 # This function generate linker scripts in /usr/lib for dynamic
603 # libs in /lib. This is to fix linking problems when you have
604 # the .so in /lib, and the .a in /usr/lib. What happens is that
605 # in some cases when linking dynamic, the .a in /usr/lib is used
606 # instead of the .so in /lib due to gcc/libtool tweaking ld's
607 # library search path. This causes many builds to fail.
608 # See bug #4411 for more info.
609 #
610 # Note that you should in general use the unversioned name of
611 # the library (libfoo.so), as ldconfig should usually update it
612 # correctly to point to the latest version of the library present.
613 gen_usr_ldscript() {
614 local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname)
615 [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/
616
617 tc-is-static-only && return
618
619 # Eventually we'd like to get rid of this func completely #417451
620 case ${CTARGET:-${CHOST}} in
621 *-darwin*) ;;
622 *linux*|*-freebsd*|*-openbsd*|*-netbsd*)
623 use prefix && return 0 ;;
624 *) return 0 ;;
625 esac
626
627 # Just make sure it exists
628 dodir /usr/${libdir}
629
630 if [[ $1 == "-a" ]] ; then
631 auto=true
632 shift
633 dodir /${libdir}
634 fi
635
636 # OUTPUT_FORMAT gives hints to the linker as to what binary format
637 # is referenced ... makes multilib saner
638 output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
639 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
640
641 for lib in "$@" ; do
642 local tlib
643 if ${auto} ; then
644 lib="lib${lib}${suffix}"
645 else
646 # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks.
647 # This especially is for AIX where $(get_libname) can return ".a",
648 # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident).
649 [[ -r ${ED}/${libdir}/${lib} ]] || continue
650 #TODO: better die here?
651 fi
652
653 case ${CTARGET:-${CHOST}} in
654 *-darwin*)
655 if ${auto} ; then
656 tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
657 else
658 tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib})
659 fi
660 [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}"
661 tlib=${tlib##*/}
662
663 if ${auto} ; then
664 mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
665 # some install_names are funky: they encode a version
666 if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then
667 mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
668 fi
669 rm -f "${ED}"/${libdir}/${lib}
670 fi
671
672 # Mach-O files have an id, which is like a soname, it tells how
673 # another object linking against this lib should reference it.
674 # Since we moved the lib from usr/lib into lib this reference is
675 # wrong. Hence, we update it here. We don't configure with
676 # libdir=/lib because that messes up libtool files.
677 # Make sure we don't lose the specific version, so just modify the
678 # existing install_name
679 if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then
680 chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it
681 local nowrite=yes
682 fi
683 install_name_tool \
684 -id "${EPREFIX}"/${libdir}/${tlib} \
685 "${ED}"/${libdir}/${tlib} || die "install_name_tool failed"
686 [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}"
687 # Now as we don't use GNU binutils and our linker doesn't
688 # understand linker scripts, just create a symlink.
689 pushd "${ED}/usr/${libdir}" > /dev/null
690 ln -snf "../../${libdir}/${tlib}" "${lib}"
691 popd > /dev/null
692 ;;
693 *)
694 if ${auto} ; then
695 tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
696 [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}"
697 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
698 # some SONAMEs are funky: they encode a version before the .so
699 if [[ ${tlib} != ${lib}* ]] ; then
700 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
701 fi
702 rm -f "${ED}"/${libdir}/${lib}
703 else
704 tlib=${lib}
705 fi
706 cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
707 /* GNU ld script
708 Since Gentoo has critical dynamic libraries in /lib, and the static versions
709 in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we
710 run into linking problems. This "fake" dynamic lib is a linker script that
711 redirects the linker to the real lib. And yes, this works in the cross-
712 compiling scenario as the sysroot-ed linker will prepend the real path.
713
714 See bug http://bugs.gentoo.org/4411 for more info.
715 */
716 ${output_format}
717 GROUP ( ${EPREFIX}/${libdir}/${tlib} )
718 END_LDSCRIPT
719 ;;
720 esac
721 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
722 done
723 }
724
725 fi

  ViewVC Help
Powered by ViewVC 1.1.20