/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Contents of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.119 - (show annotations) (download)
Fri Sep 28 15:07:30 2012 UTC (18 months, 3 weeks ago) by axs
Branch: MAIN
Changes since 1.118: +3 -2 lines
reverted fatal error from unset  and made it a warning only shown when checking for 'kern' arch, so that the portage environment call of tc-arch will not fail anymore, bug 436450

1 # Copyright 1999-2012 Gentoo Foundation
2 # Distributed under the terms of the GNU General Public License v2
3 # $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.118 2012/09/27 19:34:28 axs Exp $
4
5 # @ECLASS: toolchain-funcs.eclass
6 # @MAINTAINER:
7 # Toolchain Ninjas <toolchain@gentoo.org>
8 # @BLURB: functions to query common info about the toolchain
9 # @DESCRIPTION:
10 # The toolchain-funcs aims to provide a complete suite of functions
11 # for gleaning useful information about the toolchain and to simplify
12 # ugly things like cross-compiling and multilib. All of this is done
13 # in such a way that you can rely on the function always returning
14 # something sane.
15
16 if [[ ${___ECLASS_ONCE_TOOLCHAIN_FUNCS} != "recur -_+^+_- spank" ]] ; then
17 ___ECLASS_ONCE_TOOLCHAIN_FUNCS="recur -_+^+_- spank"
18
19 inherit multilib
20
21 # tc-getPROG <VAR [search vars]> <default> [tuple]
22 _tc-getPROG() {
23 local tuple=$1
24 local v var vars=$2
25 local prog=$3
26
27 var=${vars%% *}
28 for v in ${vars} ; do
29 if [[ -n ${!v} ]] ; then
30 export ${var}="${!v}"
31 echo "${!v}"
32 return 0
33 fi
34 done
35
36 local search=
37 [[ -n $4 ]] && search=$(type -p "$4-${prog}")
38 [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p "${!tuple}-${prog}")
39 [[ -n ${search} ]] && prog=${search##*/}
40
41 export ${var}=${prog}
42 echo "${!var}"
43 }
44 tc-getBUILD_PROG() { _tc-getPROG CBUILD "BUILD_$1 $1_FOR_BUILD HOST$1" "${@:2}"; }
45 tc-getPROG() { _tc-getPROG CHOST "$@"; }
46
47 # @FUNCTION: tc-getAR
48 # @USAGE: [toolchain prefix]
49 # @RETURN: name of the archiver
50 tc-getAR() { tc-getPROG AR ar "$@"; }
51 # @FUNCTION: tc-getAS
52 # @USAGE: [toolchain prefix]
53 # @RETURN: name of the assembler
54 tc-getAS() { tc-getPROG AS as "$@"; }
55 # @FUNCTION: tc-getCC
56 # @USAGE: [toolchain prefix]
57 # @RETURN: name of the C compiler
58 tc-getCC() { tc-getPROG CC gcc "$@"; }
59 # @FUNCTION: tc-getCPP
60 # @USAGE: [toolchain prefix]
61 # @RETURN: name of the C preprocessor
62 tc-getCPP() { tc-getPROG CPP cpp "$@"; }
63 # @FUNCTION: tc-getCXX
64 # @USAGE: [toolchain prefix]
65 # @RETURN: name of the C++ compiler
66 tc-getCXX() { tc-getPROG CXX g++ "$@"; }
67 # @FUNCTION: tc-getLD
68 # @USAGE: [toolchain prefix]
69 # @RETURN: name of the linker
70 tc-getLD() { tc-getPROG LD ld "$@"; }
71 # @FUNCTION: tc-getSTRIP
72 # @USAGE: [toolchain prefix]
73 # @RETURN: name of the strip program
74 tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
75 # @FUNCTION: tc-getNM
76 # @USAGE: [toolchain prefix]
77 # @RETURN: name of the symbol/object thingy
78 tc-getNM() { tc-getPROG NM nm "$@"; }
79 # @FUNCTION: tc-getRANLIB
80 # @USAGE: [toolchain prefix]
81 # @RETURN: name of the archiver indexer
82 tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
83 # @FUNCTION: tc-getOBJCOPY
84 # @USAGE: [toolchain prefix]
85 # @RETURN: name of the object copier
86 tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; }
87 # @FUNCTION: tc-getF77
88 # @USAGE: [toolchain prefix]
89 # @RETURN: name of the Fortran 77 compiler
90 tc-getF77() { tc-getPROG F77 gfortran "$@"; }
91 # @FUNCTION: tc-getFC
92 # @USAGE: [toolchain prefix]
93 # @RETURN: name of the Fortran 90 compiler
94 tc-getFC() { tc-getPROG FC gfortran "$@"; }
95 # @FUNCTION: tc-getGCJ
96 # @USAGE: [toolchain prefix]
97 # @RETURN: name of the java compiler
98 tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
99 # @FUNCTION: tc-getPKG_CONFIG
100 # @USAGE: [toolchain prefix]
101 # @RETURN: name of the pkg-config tool
102 tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; }
103 # @FUNCTION: tc-getRC
104 # @USAGE: [toolchain prefix]
105 # @RETURN: name of the Windows resource compiler
106 tc-getRC() { tc-getPROG RC windres "$@"; }
107 # @FUNCTION: tc-getDLLWRAP
108 # @USAGE: [toolchain prefix]
109 # @RETURN: name of the Windows dllwrap utility
110 tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; }
111
112 # @FUNCTION: tc-getBUILD_AR
113 # @USAGE: [toolchain prefix]
114 # @RETURN: name of the archiver for building binaries to run on the build machine
115 tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; }
116 # @FUNCTION: tc-getBUILD_AS
117 # @USAGE: [toolchain prefix]
118 # @RETURN: name of the assembler for building binaries to run on the build machine
119 tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; }
120 # @FUNCTION: tc-getBUILD_CC
121 # @USAGE: [toolchain prefix]
122 # @RETURN: name of the C compiler for building binaries to run on the build machine
123 tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; }
124 # @FUNCTION: tc-getBUILD_CPP
125 # @USAGE: [toolchain prefix]
126 # @RETURN: name of the C preprocessor for building binaries to run on the build machine
127 tc-getBUILD_CPP() { tc-getBUILD_PROG CPP cpp "$@"; }
128 # @FUNCTION: tc-getBUILD_CXX
129 # @USAGE: [toolchain prefix]
130 # @RETURN: name of the C++ compiler for building binaries to run on the build machine
131 tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; }
132 # @FUNCTION: tc-getBUILD_LD
133 # @USAGE: [toolchain prefix]
134 # @RETURN: name of the linker for building binaries to run on the build machine
135 tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; }
136 # @FUNCTION: tc-getBUILD_STRIP
137 # @USAGE: [toolchain prefix]
138 # @RETURN: name of the strip program for building binaries to run on the build machine
139 tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; }
140 # @FUNCTION: tc-getBUILD_NM
141 # @USAGE: [toolchain prefix]
142 # @RETURN: name of the symbol/object thingy for building binaries to run on the build machine
143 tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; }
144 # @FUNCTION: tc-getBUILD_RANLIB
145 # @USAGE: [toolchain prefix]
146 # @RETURN: name of the archiver indexer for building binaries to run on the build machine
147 tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; }
148 # @FUNCTION: tc-getBUILD_OBJCOPY
149 # @USAGE: [toolchain prefix]
150 # @RETURN: name of the object copier for building binaries to run on the build machine
151 tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; }
152 # @FUNCTION: tc-getBUILD_PKG_CONFIG
153 # @USAGE: [toolchain prefix]
154 # @RETURN: name of the pkg-config tool for building binaries to run on the build machine
155 tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; }
156
157 # @FUNCTION: tc-export
158 # @USAGE: <list of toolchain variables>
159 # @DESCRIPTION:
160 # Quick way to export a bunch of compiler vars at once.
161 tc-export() {
162 local var
163 for var in "$@" ; do
164 [[ $(type -t tc-get${var}) != "function" ]] && die "tc-export: invalid export variable '${var}'"
165 eval tc-get${var} > /dev/null
166 done
167 }
168
169 # @FUNCTION: tc-is-cross-compiler
170 # @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
171 tc-is-cross-compiler() {
172 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
173 }
174
175 # @FUNCTION: tc-is-softfloat
176 # @DESCRIPTION:
177 # See if this toolchain is a softfloat based one.
178 # @CODE
179 # The possible return values:
180 # - only: the target is always softfloat (never had fpu)
181 # - yes: the target should support softfloat
182 # - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention
183 # - no: the target doesn't support softfloat
184 # @CODE
185 # This allows us to react differently where packages accept
186 # softfloat flags in the case where support is optional, but
187 # rejects softfloat flags where the target always lacks an fpu.
188 tc-is-softfloat() {
189 local CTARGET=${CTARGET:-${CHOST}}
190 case ${CTARGET} in
191 bfin*|h8300*)
192 echo "only" ;;
193 *)
194 if [[ ${CTARGET//_/-} == *-softfloat-* ]] ; then
195 echo "yes"
196 elif [[ ${CTARGET//_/-} == *-softfp-* ]] ; then
197 echo "softfp"
198 else
199 echo "no"
200 fi
201 ;;
202 esac
203 }
204
205 # @FUNCTION: tc-is-static-only
206 # @DESCRIPTION:
207 # Return shell true if the target does not support shared libs, shell false
208 # otherwise.
209 tc-is-static-only() {
210 local host=${CTARGET:-${CHOST}}
211
212 # *MiNT doesn't have shared libraries, only platform so far
213 return $([[ ${host} == *-mint* ]])
214 }
215
216 # @FUNCTION: tc-export_build_env
217 # @USAGE: [compiler variables]
218 # @DESCRIPTION:
219 # Export common build related compiler settings.
220 tc-export_build_env() {
221 tc-export "$@"
222 : ${BUILD_CFLAGS:=-O1 -pipe}
223 : ${BUILD_CXXFLAGS:=-O1 -pipe}
224 : ${BUILD_CPPFLAGS:=}
225 : ${BUILD_LDFLAGS:=}
226 export BUILD_{C,CXX,CPP,LD}FLAGS
227 }
228
229 # @FUNCTION: tc-env_build
230 # @USAGE: <command> [command args]
231 # @INTERNAL
232 # @DESCRIPTION:
233 # Setup the compile environment to the build tools and then execute the
234 # specified command. We use tc-getBUILD_XX here so that we work with
235 # all of the semi-[non-]standard env vars like $BUILD_CC which often
236 # the target build system does not check.
237 tc-env_build() {
238 tc-export_build_env
239 CFLAGS=${BUILD_CFLAGS} \
240 CXXFLAGS=${BUILD_CXXFLAGS} \
241 CPPFLAGS=${BUILD_CPPFLAGS} \
242 LDFLAGS=${BUILD_LDFLAGS} \
243 AR=$(tc-getBUILD_AR) \
244 AS=$(tc-getBUILD_AS) \
245 CC=$(tc-getBUILD_CC) \
246 CPP=$(tc-getBUILD_CPP) \
247 CXX=$(tc-getBUILD_CXX) \
248 LD=$(tc-getBUILD_LD) \
249 NM=$(tc-getBUILD_NM) \
250 PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \
251 RANLIB=$(tc-getBUILD_RANLIB) \
252 "$@"
253 }
254
255 # @FUNCTION: econf_build
256 # @USAGE: [econf flags]
257 # @DESCRIPTION:
258 # Sometimes we need to locally build up some tools to run on CBUILD because
259 # the package has helper utils which are compiled+executed when compiling.
260 # This won't work when cross-compiling as the CHOST is set to a target which
261 # we cannot natively execute.
262 #
263 # For example, the python package will build up a local python binary using
264 # a portable build system (configure+make), but then use that binary to run
265 # local python scripts to build up other components of the overall python.
266 # We cannot rely on the python binary in $PATH as that often times will be
267 # a different version, or not even installed in the first place. Instead,
268 # we compile the code in a different directory to run on CBUILD, and then
269 # use that binary when compiling the main package to run on CHOST.
270 #
271 # For example, with newer EAPIs, you'd do something like:
272 # @CODE
273 # src_configure() {
274 # ECONF_SOURCE=${S}
275 # if tc-is-cross-compiler ; then
276 # mkdir "${WORKDIR}"/${CBUILD}
277 # pushd "${WORKDIR}"/${CBUILD} >/dev/null
278 # econf_build --disable-some-unused-stuff
279 # popd >/dev/null
280 # fi
281 # ... normal build paths ...
282 # }
283 # src_compile() {
284 # if tc-is-cross-compiler ; then
285 # pushd "${WORKDIR}"/${CBUILD} >/dev/null
286 # emake one-or-two-build-tools
287 # ln/mv build-tools to normal build paths in ${S}/
288 # popd >/dev/null
289 # fi
290 # ... normal build paths ...
291 # }
292 # @CODE
293 econf_build() {
294 tc-env_build econf --build=${CBUILD:-${CHOST}} "$@"
295 }
296
297 # @FUNCTION: tc-has-openmp
298 # @USAGE: [toolchain prefix]
299 # @DESCRIPTION:
300 # See if the toolchain supports OpenMP.
301 tc-has-openmp() {
302 local base="${T}/test-tc-openmp"
303 cat <<-EOF > "${base}.c"
304 #include <omp.h>
305 int main() {
306 int nthreads, tid, ret = 0;
307 #pragma omp parallel private(nthreads, tid)
308 {
309 tid = omp_get_thread_num();
310 nthreads = omp_get_num_threads(); ret += tid + nthreads;
311 }
312 return ret;
313 }
314 EOF
315 $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null
316 local ret=$?
317 rm -f "${base}"*
318 return ${ret}
319 }
320
321 # @FUNCTION: tc-has-tls
322 # @USAGE: [-s|-c|-l] [toolchain prefix]
323 # @DESCRIPTION:
324 # See if the toolchain supports thread local storage (TLS). Use -s to test the
325 # compiler, -c to also test the assembler, and -l to also test the C library
326 # (the default).
327 tc-has-tls() {
328 local base="${T}/test-tc-tls"
329 cat <<-EOF > "${base}.c"
330 int foo(int *i) {
331 static __thread int j = 0;
332 return *i ? j : *i;
333 }
334 EOF
335 local flags
336 case $1 in
337 -s) flags="-S";;
338 -c) flags="-c";;
339 -l) ;;
340 -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";;
341 esac
342 : ${flags:=-fPIC -shared -Wl,-z,defs}
343 [[ $1 == -* ]] && shift
344 $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null
345 local ret=$?
346 rm -f "${base}"*
347 return ${ret}
348 }
349
350
351 # Parse information from CBUILD/CHOST/CTARGET rather than
352 # use external variables from the profile.
353 tc-ninja_magic_to_arch() {
354 ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
355
356 local type=$1
357 local host=$2
358 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
359
360 local KV=${KV:-${KV_FULL}}
361 [[ ${type} == "kern" ]] && [[ -z ${KV} ]] && \
362 ewarn "QA: Kernel version could not be determined, please inherit kernel-2 or linux-info"
363
364 case ${host} in
365 aarch64*) ninj aarch64 arm;;
366 alpha*) echo alpha;;
367 arm*) echo arm;;
368 avr*) ninj avr32 avr;;
369 bfin*) ninj blackfin bfin;;
370 cris*) echo cris;;
371 hppa*) ninj parisc hppa;;
372 i?86*)
373 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
374 # trees have been unified into 'x86'.
375 # FreeBSD still uses i386
376 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -lt $(KV_to_int 2.6.24) || ${host} == *freebsd* ]] ; then
377 echo i386
378 else
379 echo x86
380 fi
381 ;;
382 ia64*) echo ia64;;
383 m68*) echo m68k;;
384 mips*) echo mips;;
385 nios2*) echo nios2;;
386 nios*) echo nios;;
387 powerpc*)
388 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
389 # have been unified into simply 'powerpc', but until 2.6.16,
390 # ppc32 is still using ARCH="ppc" as default
391 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] ; then
392 echo powerpc
393 elif [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] ; then
394 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
395 echo powerpc
396 else
397 echo ppc
398 fi
399 elif [[ ${host} == powerpc64* ]] ; then
400 echo ppc64
401 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
402 ninj ppc64 ppc
403 else
404 echo ppc
405 fi
406 ;;
407 s390*) echo s390;;
408 sh64*) ninj sh64 sh;;
409 sh*) echo sh;;
410 sparc64*) ninj sparc64 sparc;;
411 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
412 && ninj sparc64 sparc \
413 || echo sparc
414 ;;
415 vax*) echo vax;;
416 x86_64*freebsd*) echo amd64;;
417 x86_64*)
418 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
419 # trees have been unified into 'x86'.
420 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.24) ]] ; then
421 echo x86
422 else
423 ninj x86_64 amd64
424 fi
425 ;;
426
427 # since our usage of tc-arch is largely concerned with
428 # normalizing inputs for testing ${CTARGET}, let's filter
429 # other cross targets (mingw and such) into the unknown.
430 *) echo unknown;;
431 esac
432 }
433 # @FUNCTION: tc-arch-kernel
434 # @USAGE: [toolchain prefix]
435 # @RETURN: name of the kernel arch according to the compiler target
436 tc-arch-kernel() {
437 tc-ninja_magic_to_arch kern "$@"
438 }
439 # @FUNCTION: tc-arch
440 # @USAGE: [toolchain prefix]
441 # @RETURN: name of the portage arch according to the compiler target
442 tc-arch() {
443 tc-ninja_magic_to_arch portage "$@"
444 }
445
446 tc-endian() {
447 local host=$1
448 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
449 host=${host%%-*}
450
451 case ${host} in
452 aarch64*be) echo big;;
453 aarch64) echo little;;
454 alpha*) echo big;;
455 arm*b*) echo big;;
456 arm*) echo little;;
457 cris*) echo little;;
458 hppa*) echo big;;
459 i?86*) echo little;;
460 ia64*) echo little;;
461 m68*) echo big;;
462 mips*l*) echo little;;
463 mips*) echo big;;
464 powerpc*) echo big;;
465 s390*) echo big;;
466 sh*b*) echo big;;
467 sh*) echo little;;
468 sparc*) echo big;;
469 x86_64*) echo little;;
470 *) echo wtf;;
471 esac
472 }
473
474 # Internal func. The first argument is the version info to expand.
475 # Query the preprocessor to improve compatibility across different
476 # compilers rather than maintaining a --version flag matrix. #335943
477 _gcc_fullversion() {
478 local ver="$1"; shift
479 set -- `$(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__"`
480 eval echo "$ver"
481 }
482
483 # @FUNCTION: gcc-fullversion
484 # @RETURN: compiler version (major.minor.micro: [3.4.6])
485 gcc-fullversion() {
486 _gcc_fullversion '$1.$2.$3' "$@"
487 }
488 # @FUNCTION: gcc-version
489 # @RETURN: compiler version (major.minor: [3.4].6)
490 gcc-version() {
491 _gcc_fullversion '$1.$2' "$@"
492 }
493 # @FUNCTION: gcc-major-version
494 # @RETURN: major compiler version (major: [3].4.6)
495 gcc-major-version() {
496 _gcc_fullversion '$1' "$@"
497 }
498 # @FUNCTION: gcc-minor-version
499 # @RETURN: minor compiler version (minor: 3.[4].6)
500 gcc-minor-version() {
501 _gcc_fullversion '$2' "$@"
502 }
503 # @FUNCTION: gcc-micro-version
504 # @RETURN: micro compiler version (micro: 3.4.[6])
505 gcc-micro-version() {
506 _gcc_fullversion '$3' "$@"
507 }
508
509 # Returns the installation directory - internal toolchain
510 # function for use by _gcc-specs-exists (for flag-o-matic).
511 _gcc-install-dir() {
512 echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\
513 awk '$1=="install:" {print $2}')"
514 }
515 # Returns true if the indicated specs file exists - internal toolchain
516 # function for use by flag-o-matic.
517 _gcc-specs-exists() {
518 [[ -f $(_gcc-install-dir)/$1 ]]
519 }
520
521 # Returns requested gcc specs directive unprocessed - for used by
522 # gcc-specs-directive()
523 # Note; later specs normally overwrite earlier ones; however if a later
524 # spec starts with '+' then it appends.
525 # gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
526 # as "Reading <file>", in order. Strictly speaking, if there's a
527 # $(gcc_install_dir)/specs, the built-in specs aren't read, however by
528 # the same token anything from 'gcc -dumpspecs' is overridden by
529 # the contents of $(gcc_install_dir)/specs so the result is the
530 # same either way.
531 _gcc-specs-directive_raw() {
532 local cc=$(tc-getCC)
533 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
534 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
535 'BEGIN { pspec=""; spec=""; outside=1 }
536 $1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
537 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
538 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
539 { spec=spec $0 }
540 END { print spec }'
541 return 0
542 }
543
544 # Return the requested gcc specs directive, with all included
545 # specs expanded.
546 # Note, it does not check for inclusion loops, which cause it
547 # to never finish - but such loops are invalid for gcc and we're
548 # assuming gcc is operational.
549 gcc-specs-directive() {
550 local directive subdname subdirective
551 directive="$(_gcc-specs-directive_raw $1)"
552 while [[ ${directive} == *%\(*\)* ]]; do
553 subdname=${directive/*%\(}
554 subdname=${subdname/\)*}
555 subdirective="$(_gcc-specs-directive_raw ${subdname})"
556 directive="${directive//\%(${subdname})/${subdirective}}"
557 done
558 echo "${directive}"
559 return 0
560 }
561
562 # Returns true if gcc sets relro
563 gcc-specs-relro() {
564 local directive
565 directive=$(gcc-specs-directive link_command)
566 return $([[ "${directive/\{!norelro:}" != "${directive}" ]])
567 }
568 # Returns true if gcc sets now
569 gcc-specs-now() {
570 local directive
571 directive=$(gcc-specs-directive link_command)
572 return $([[ "${directive/\{!nonow:}" != "${directive}" ]])
573 }
574 # Returns true if gcc builds PIEs
575 gcc-specs-pie() {
576 local directive
577 directive=$(gcc-specs-directive cc1)
578 return $([[ "${directive/\{!nopie:}" != "${directive}" ]])
579 }
580 # Returns true if gcc builds with the stack protector
581 gcc-specs-ssp() {
582 local directive
583 directive=$(gcc-specs-directive cc1)
584 return $([[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]])
585 }
586 # Returns true if gcc upgrades fstack-protector to fstack-protector-all
587 gcc-specs-ssp-to-all() {
588 local directive
589 directive=$(gcc-specs-directive cc1)
590 return $([[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]])
591 }
592 # Returns true if gcc builds with fno-strict-overflow
593 gcc-specs-nostrict() {
594 local directive
595 directive=$(gcc-specs-directive cc1)
596 return $([[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]])
597 }
598
599
600 # @FUNCTION: gen_usr_ldscript
601 # @USAGE: [-a] <list of libs to create linker scripts for>
602 # @DESCRIPTION:
603 # This function generate linker scripts in /usr/lib for dynamic
604 # libs in /lib. This is to fix linking problems when you have
605 # the .so in /lib, and the .a in /usr/lib. What happens is that
606 # in some cases when linking dynamic, the .a in /usr/lib is used
607 # instead of the .so in /lib due to gcc/libtool tweaking ld's
608 # library search path. This causes many builds to fail.
609 # See bug #4411 for more info.
610 #
611 # Note that you should in general use the unversioned name of
612 # the library (libfoo.so), as ldconfig should usually update it
613 # correctly to point to the latest version of the library present.
614 gen_usr_ldscript() {
615 local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname)
616 [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/
617
618 tc-is-static-only && return
619
620 # Eventually we'd like to get rid of this func completely #417451
621 case ${CTARGET:-${CHOST}} in
622 *-darwin*) ;;
623 *linux*|*-freebsd*|*-openbsd*|*-netbsd*)
624 use prefix && return 0 ;;
625 *) return 0 ;;
626 esac
627
628 # Just make sure it exists
629 dodir /usr/${libdir}
630
631 if [[ $1 == "-a" ]] ; then
632 auto=true
633 shift
634 dodir /${libdir}
635 fi
636
637 # OUTPUT_FORMAT gives hints to the linker as to what binary format
638 # is referenced ... makes multilib saner
639 output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
640 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
641
642 for lib in "$@" ; do
643 local tlib
644 if ${auto} ; then
645 lib="lib${lib}${suffix}"
646 else
647 # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks.
648 # This especially is for AIX where $(get_libname) can return ".a",
649 # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident).
650 [[ -r ${ED}/${libdir}/${lib} ]] || continue
651 #TODO: better die here?
652 fi
653
654 case ${CTARGET:-${CHOST}} in
655 *-darwin*)
656 if ${auto} ; then
657 tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
658 else
659 tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib})
660 fi
661 [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}"
662 tlib=${tlib##*/}
663
664 if ${auto} ; then
665 mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
666 # some install_names are funky: they encode a version
667 if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then
668 mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
669 fi
670 rm -f "${ED}"/${libdir}/${lib}
671 fi
672
673 # Mach-O files have an id, which is like a soname, it tells how
674 # another object linking against this lib should reference it.
675 # Since we moved the lib from usr/lib into lib this reference is
676 # wrong. Hence, we update it here. We don't configure with
677 # libdir=/lib because that messes up libtool files.
678 # Make sure we don't lose the specific version, so just modify the
679 # existing install_name
680 if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then
681 chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it
682 local nowrite=yes
683 fi
684 install_name_tool \
685 -id "${EPREFIX}"/${libdir}/${tlib} \
686 "${ED}"/${libdir}/${tlib} || die "install_name_tool failed"
687 [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}"
688 # Now as we don't use GNU binutils and our linker doesn't
689 # understand linker scripts, just create a symlink.
690 pushd "${ED}/usr/${libdir}" > /dev/null
691 ln -snf "../../${libdir}/${tlib}" "${lib}"
692 popd > /dev/null
693 ;;
694 *)
695 if ${auto} ; then
696 tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
697 [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}"
698 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
699 # some SONAMEs are funky: they encode a version before the .so
700 if [[ ${tlib} != ${lib}* ]] ; then
701 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
702 fi
703 rm -f "${ED}"/${libdir}/${lib}
704 else
705 tlib=${lib}
706 fi
707 cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
708 /* GNU ld script
709 Since Gentoo has critical dynamic libraries in /lib, and the static versions
710 in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we
711 run into linking problems. This "fake" dynamic lib is a linker script that
712 redirects the linker to the real lib. And yes, this works in the cross-
713 compiling scenario as the sysroot-ed linker will prepend the real path.
714
715 See bug http://bugs.gentoo.org/4411 for more info.
716 */
717 ${output_format}
718 GROUP ( ${EPREFIX}/${libdir}/${tlib} )
719 END_LDSCRIPT
720 ;;
721 esac
722 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
723 done
724 }
725
726 fi

  ViewVC Help
Powered by ViewVC 1.1.20