/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Contents of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.124 - (show annotations) (download)
Tue Jan 14 05:33:12 2014 UTC (5 months, 3 weeks ago) by vapier
Branch: MAIN
Changes since 1.123: +3 -3 lines
split aarch64 off into its own keyword

1 # Copyright 1999-2014 Gentoo Foundation
2 # Distributed under the terms of the GNU General Public License v2
3 # $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.123 2013/10/12 21:31:01 vapier Exp $
4
5 # @ECLASS: toolchain-funcs.eclass
6 # @MAINTAINER:
7 # Toolchain Ninjas <toolchain@gentoo.org>
8 # @BLURB: functions to query common info about the toolchain
9 # @DESCRIPTION:
10 # The toolchain-funcs aims to provide a complete suite of functions
11 # for gleaning useful information about the toolchain and to simplify
12 # ugly things like cross-compiling and multilib. All of this is done
13 # in such a way that you can rely on the function always returning
14 # something sane.
15
16 if [[ ${___ECLASS_ONCE_TOOLCHAIN_FUNCS} != "recur -_+^+_- spank" ]] ; then
17 ___ECLASS_ONCE_TOOLCHAIN_FUNCS="recur -_+^+_- spank"
18
19 inherit multilib
20
21 # tc-getPROG <VAR [search vars]> <default> [tuple]
22 _tc-getPROG() {
23 local tuple=$1
24 local v var vars=$2
25 local prog=$3
26
27 var=${vars%% *}
28 for v in ${vars} ; do
29 if [[ -n ${!v} ]] ; then
30 export ${var}="${!v}"
31 echo "${!v}"
32 return 0
33 fi
34 done
35
36 local search=
37 [[ -n $4 ]] && search=$(type -p "$4-${prog}")
38 [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p "${!tuple}-${prog}")
39 [[ -n ${search} ]] && prog=${search##*/}
40
41 export ${var}=${prog}
42 echo "${!var}"
43 }
44 tc-getBUILD_PROG() { _tc-getPROG CBUILD "BUILD_$1 $1_FOR_BUILD HOST$1" "${@:2}"; }
45 tc-getPROG() { _tc-getPROG CHOST "$@"; }
46
47 # @FUNCTION: tc-getAR
48 # @USAGE: [toolchain prefix]
49 # @RETURN: name of the archiver
50 tc-getAR() { tc-getPROG AR ar "$@"; }
51 # @FUNCTION: tc-getAS
52 # @USAGE: [toolchain prefix]
53 # @RETURN: name of the assembler
54 tc-getAS() { tc-getPROG AS as "$@"; }
55 # @FUNCTION: tc-getCC
56 # @USAGE: [toolchain prefix]
57 # @RETURN: name of the C compiler
58 tc-getCC() { tc-getPROG CC gcc "$@"; }
59 # @FUNCTION: tc-getCPP
60 # @USAGE: [toolchain prefix]
61 # @RETURN: name of the C preprocessor
62 tc-getCPP() { tc-getPROG CPP cpp "$@"; }
63 # @FUNCTION: tc-getCXX
64 # @USAGE: [toolchain prefix]
65 # @RETURN: name of the C++ compiler
66 tc-getCXX() { tc-getPROG CXX g++ "$@"; }
67 # @FUNCTION: tc-getLD
68 # @USAGE: [toolchain prefix]
69 # @RETURN: name of the linker
70 tc-getLD() { tc-getPROG LD ld "$@"; }
71 # @FUNCTION: tc-getSTRIP
72 # @USAGE: [toolchain prefix]
73 # @RETURN: name of the strip program
74 tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
75 # @FUNCTION: tc-getNM
76 # @USAGE: [toolchain prefix]
77 # @RETURN: name of the symbol/object thingy
78 tc-getNM() { tc-getPROG NM nm "$@"; }
79 # @FUNCTION: tc-getRANLIB
80 # @USAGE: [toolchain prefix]
81 # @RETURN: name of the archiver indexer
82 tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
83 # @FUNCTION: tc-getOBJCOPY
84 # @USAGE: [toolchain prefix]
85 # @RETURN: name of the object copier
86 tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; }
87 # @FUNCTION: tc-getF77
88 # @USAGE: [toolchain prefix]
89 # @RETURN: name of the Fortran 77 compiler
90 tc-getF77() { tc-getPROG F77 gfortran "$@"; }
91 # @FUNCTION: tc-getFC
92 # @USAGE: [toolchain prefix]
93 # @RETURN: name of the Fortran 90 compiler
94 tc-getFC() { tc-getPROG FC gfortran "$@"; }
95 # @FUNCTION: tc-getGCJ
96 # @USAGE: [toolchain prefix]
97 # @RETURN: name of the java compiler
98 tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
99 # @FUNCTION: tc-getPKG_CONFIG
100 # @USAGE: [toolchain prefix]
101 # @RETURN: name of the pkg-config tool
102 tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; }
103 # @FUNCTION: tc-getRC
104 # @USAGE: [toolchain prefix]
105 # @RETURN: name of the Windows resource compiler
106 tc-getRC() { tc-getPROG RC windres "$@"; }
107 # @FUNCTION: tc-getDLLWRAP
108 # @USAGE: [toolchain prefix]
109 # @RETURN: name of the Windows dllwrap utility
110 tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; }
111
112 # @FUNCTION: tc-getBUILD_AR
113 # @USAGE: [toolchain prefix]
114 # @RETURN: name of the archiver for building binaries to run on the build machine
115 tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; }
116 # @FUNCTION: tc-getBUILD_AS
117 # @USAGE: [toolchain prefix]
118 # @RETURN: name of the assembler for building binaries to run on the build machine
119 tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; }
120 # @FUNCTION: tc-getBUILD_CC
121 # @USAGE: [toolchain prefix]
122 # @RETURN: name of the C compiler for building binaries to run on the build machine
123 tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; }
124 # @FUNCTION: tc-getBUILD_CPP
125 # @USAGE: [toolchain prefix]
126 # @RETURN: name of the C preprocessor for building binaries to run on the build machine
127 tc-getBUILD_CPP() { tc-getBUILD_PROG CPP cpp "$@"; }
128 # @FUNCTION: tc-getBUILD_CXX
129 # @USAGE: [toolchain prefix]
130 # @RETURN: name of the C++ compiler for building binaries to run on the build machine
131 tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; }
132 # @FUNCTION: tc-getBUILD_LD
133 # @USAGE: [toolchain prefix]
134 # @RETURN: name of the linker for building binaries to run on the build machine
135 tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; }
136 # @FUNCTION: tc-getBUILD_STRIP
137 # @USAGE: [toolchain prefix]
138 # @RETURN: name of the strip program for building binaries to run on the build machine
139 tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; }
140 # @FUNCTION: tc-getBUILD_NM
141 # @USAGE: [toolchain prefix]
142 # @RETURN: name of the symbol/object thingy for building binaries to run on the build machine
143 tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; }
144 # @FUNCTION: tc-getBUILD_RANLIB
145 # @USAGE: [toolchain prefix]
146 # @RETURN: name of the archiver indexer for building binaries to run on the build machine
147 tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; }
148 # @FUNCTION: tc-getBUILD_OBJCOPY
149 # @USAGE: [toolchain prefix]
150 # @RETURN: name of the object copier for building binaries to run on the build machine
151 tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; }
152 # @FUNCTION: tc-getBUILD_PKG_CONFIG
153 # @USAGE: [toolchain prefix]
154 # @RETURN: name of the pkg-config tool for building binaries to run on the build machine
155 tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; }
156
157 # @FUNCTION: tc-export
158 # @USAGE: <list of toolchain variables>
159 # @DESCRIPTION:
160 # Quick way to export a bunch of compiler vars at once.
161 tc-export() {
162 local var
163 for var in "$@" ; do
164 [[ $(type -t tc-get${var}) != "function" ]] && die "tc-export: invalid export variable '${var}'"
165 eval tc-get${var} > /dev/null
166 done
167 }
168
169 # @FUNCTION: tc-is-cross-compiler
170 # @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
171 tc-is-cross-compiler() {
172 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
173 }
174
175 # @FUNCTION: tc-is-softfloat
176 # @DESCRIPTION:
177 # See if this toolchain is a softfloat based one.
178 # @CODE
179 # The possible return values:
180 # - only: the target is always softfloat (never had fpu)
181 # - yes: the target should support softfloat
182 # - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention
183 # - no: the target doesn't support softfloat
184 # @CODE
185 # This allows us to react differently where packages accept
186 # softfloat flags in the case where support is optional, but
187 # rejects softfloat flags where the target always lacks an fpu.
188 tc-is-softfloat() {
189 local CTARGET=${CTARGET:-${CHOST}}
190 case ${CTARGET} in
191 bfin*|h8300*)
192 echo "only" ;;
193 *)
194 if [[ ${CTARGET//_/-} == *-softfloat-* ]] ; then
195 echo "yes"
196 elif [[ ${CTARGET//_/-} == *-softfp-* ]] ; then
197 echo "softfp"
198 else
199 echo "no"
200 fi
201 ;;
202 esac
203 }
204
205 # @FUNCTION: tc-is-static-only
206 # @DESCRIPTION:
207 # Return shell true if the target does not support shared libs, shell false
208 # otherwise.
209 tc-is-static-only() {
210 local host=${CTARGET:-${CHOST}}
211
212 # *MiNT doesn't have shared libraries, only platform so far
213 return $([[ ${host} == *-mint* ]])
214 }
215
216 # @FUNCTION: tc-export_build_env
217 # @USAGE: [compiler variables]
218 # @DESCRIPTION:
219 # Export common build related compiler settings.
220 tc-export_build_env() {
221 tc-export "$@"
222 : ${BUILD_CFLAGS:=-O1 -pipe}
223 : ${BUILD_CXXFLAGS:=-O1 -pipe}
224 : ${BUILD_CPPFLAGS:=}
225 : ${BUILD_LDFLAGS:=}
226 export BUILD_{C,CXX,CPP,LD}FLAGS
227
228 # Some packages use XXX_FOR_BUILD.
229 local v
230 for v in BUILD_{C,CXX,CPP,LD}FLAGS ; do
231 export ${v#BUILD_}_FOR_BUILD="${!v}"
232 done
233 }
234
235 # @FUNCTION: tc-env_build
236 # @USAGE: <command> [command args]
237 # @INTERNAL
238 # @DESCRIPTION:
239 # Setup the compile environment to the build tools and then execute the
240 # specified command. We use tc-getBUILD_XX here so that we work with
241 # all of the semi-[non-]standard env vars like $BUILD_CC which often
242 # the target build system does not check.
243 tc-env_build() {
244 tc-export_build_env
245 CFLAGS=${BUILD_CFLAGS} \
246 CXXFLAGS=${BUILD_CXXFLAGS} \
247 CPPFLAGS=${BUILD_CPPFLAGS} \
248 LDFLAGS=${BUILD_LDFLAGS} \
249 AR=$(tc-getBUILD_AR) \
250 AS=$(tc-getBUILD_AS) \
251 CC=$(tc-getBUILD_CC) \
252 CPP=$(tc-getBUILD_CPP) \
253 CXX=$(tc-getBUILD_CXX) \
254 LD=$(tc-getBUILD_LD) \
255 NM=$(tc-getBUILD_NM) \
256 PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \
257 RANLIB=$(tc-getBUILD_RANLIB) \
258 "$@"
259 }
260
261 # @FUNCTION: econf_build
262 # @USAGE: [econf flags]
263 # @DESCRIPTION:
264 # Sometimes we need to locally build up some tools to run on CBUILD because
265 # the package has helper utils which are compiled+executed when compiling.
266 # This won't work when cross-compiling as the CHOST is set to a target which
267 # we cannot natively execute.
268 #
269 # For example, the python package will build up a local python binary using
270 # a portable build system (configure+make), but then use that binary to run
271 # local python scripts to build up other components of the overall python.
272 # We cannot rely on the python binary in $PATH as that often times will be
273 # a different version, or not even installed in the first place. Instead,
274 # we compile the code in a different directory to run on CBUILD, and then
275 # use that binary when compiling the main package to run on CHOST.
276 #
277 # For example, with newer EAPIs, you'd do something like:
278 # @CODE
279 # src_configure() {
280 # ECONF_SOURCE=${S}
281 # if tc-is-cross-compiler ; then
282 # mkdir "${WORKDIR}"/${CBUILD}
283 # pushd "${WORKDIR}"/${CBUILD} >/dev/null
284 # econf_build --disable-some-unused-stuff
285 # popd >/dev/null
286 # fi
287 # ... normal build paths ...
288 # }
289 # src_compile() {
290 # if tc-is-cross-compiler ; then
291 # pushd "${WORKDIR}"/${CBUILD} >/dev/null
292 # emake one-or-two-build-tools
293 # ln/mv build-tools to normal build paths in ${S}/
294 # popd >/dev/null
295 # fi
296 # ... normal build paths ...
297 # }
298 # @CODE
299 econf_build() {
300 tc-env_build econf --build=${CBUILD:-${CHOST}} "$@"
301 }
302
303 # @FUNCTION: tc-has-openmp
304 # @USAGE: [toolchain prefix]
305 # @DESCRIPTION:
306 # See if the toolchain supports OpenMP.
307 tc-has-openmp() {
308 local base="${T}/test-tc-openmp"
309 cat <<-EOF > "${base}.c"
310 #include <omp.h>
311 int main() {
312 int nthreads, tid, ret = 0;
313 #pragma omp parallel private(nthreads, tid)
314 {
315 tid = omp_get_thread_num();
316 nthreads = omp_get_num_threads(); ret += tid + nthreads;
317 }
318 return ret;
319 }
320 EOF
321 $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null
322 local ret=$?
323 rm -f "${base}"*
324 return ${ret}
325 }
326
327 # @FUNCTION: tc-has-tls
328 # @USAGE: [-s|-c|-l] [toolchain prefix]
329 # @DESCRIPTION:
330 # See if the toolchain supports thread local storage (TLS). Use -s to test the
331 # compiler, -c to also test the assembler, and -l to also test the C library
332 # (the default).
333 tc-has-tls() {
334 local base="${T}/test-tc-tls"
335 cat <<-EOF > "${base}.c"
336 int foo(int *i) {
337 static __thread int j = 0;
338 return *i ? j : *i;
339 }
340 EOF
341 local flags
342 case $1 in
343 -s) flags="-S";;
344 -c) flags="-c";;
345 -l) ;;
346 -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";;
347 esac
348 : ${flags:=-fPIC -shared -Wl,-z,defs}
349 [[ $1 == -* ]] && shift
350 $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null
351 local ret=$?
352 rm -f "${base}"*
353 return ${ret}
354 }
355
356
357 # Parse information from CBUILD/CHOST/CTARGET rather than
358 # use external variables from the profile.
359 tc-ninja_magic_to_arch() {
360 ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
361
362 local type=$1
363 local host=$2
364 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
365
366 local KV=${KV:-${KV_FULL}}
367 [[ ${type} == "kern" ]] && [[ -z ${KV} ]] && \
368 ewarn "QA: Kernel version could not be determined, please inherit kernel-2 or linux-info"
369
370 case ${host} in
371 aarch64*) ninj arm64 aarch64;;
372 alpha*) echo alpha;;
373 arm*) echo arm;;
374 avr*) ninj avr32 avr;;
375 bfin*) ninj blackfin bfin;;
376 c6x) echo c6x;;
377 cris*) echo cris;;
378 frv) echo frv;;
379 hexagon) echo hexagon;;
380 hppa*) ninj parisc hppa;;
381 i?86*)
382 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
383 # trees have been unified into 'x86'.
384 # FreeBSD still uses i386
385 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -lt $(KV_to_int 2.6.24) || ${host} == *freebsd* ]] ; then
386 echo i386
387 else
388 echo x86
389 fi
390 ;;
391 ia64*) echo ia64;;
392 m68*) echo m68k;;
393 metag) echo metag;;
394 mips*) echo mips;;
395 nios2*) echo nios2;;
396 nios*) echo nios;;
397 or32) echo openrisc;;
398 powerpc*)
399 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
400 # have been unified into simply 'powerpc', but until 2.6.16,
401 # ppc32 is still using ARCH="ppc" as default
402 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] ; then
403 echo powerpc
404 elif [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] ; then
405 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
406 echo powerpc
407 else
408 echo ppc
409 fi
410 elif [[ ${host} == powerpc64* ]] ; then
411 echo ppc64
412 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
413 ninj ppc64 ppc
414 else
415 echo ppc
416 fi
417 ;;
418 s390*) echo s390;;
419 score) echo score;;
420 sh64*) ninj sh64 sh;;
421 sh*) echo sh;;
422 sparc64*) ninj sparc64 sparc;;
423 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
424 && ninj sparc64 sparc \
425 || echo sparc
426 ;;
427 tile*) echo tile;;
428 vax*) echo vax;;
429 x86_64*freebsd*) echo amd64;;
430 x86_64*)
431 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
432 # trees have been unified into 'x86'.
433 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.24) ]] ; then
434 echo x86
435 else
436 ninj x86_64 amd64
437 fi
438 ;;
439 xtensa*) echo xtensa;;
440
441 # since our usage of tc-arch is largely concerned with
442 # normalizing inputs for testing ${CTARGET}, let's filter
443 # other cross targets (mingw and such) into the unknown.
444 *) echo unknown;;
445 esac
446 }
447 # @FUNCTION: tc-arch-kernel
448 # @USAGE: [toolchain prefix]
449 # @RETURN: name of the kernel arch according to the compiler target
450 tc-arch-kernel() {
451 tc-ninja_magic_to_arch kern "$@"
452 }
453 # @FUNCTION: tc-arch
454 # @USAGE: [toolchain prefix]
455 # @RETURN: name of the portage arch according to the compiler target
456 tc-arch() {
457 tc-ninja_magic_to_arch portage "$@"
458 }
459
460 tc-endian() {
461 local host=$1
462 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
463 host=${host%%-*}
464
465 case ${host} in
466 aarch64*be) echo big;;
467 aarch64) echo little;;
468 alpha*) echo big;;
469 arm*b*) echo big;;
470 arm*) echo little;;
471 cris*) echo little;;
472 hppa*) echo big;;
473 i?86*) echo little;;
474 ia64*) echo little;;
475 m68*) echo big;;
476 mips*l*) echo little;;
477 mips*) echo big;;
478 powerpc*) echo big;;
479 s390*) echo big;;
480 sh*b*) echo big;;
481 sh*) echo little;;
482 sparc*) echo big;;
483 x86_64*) echo little;;
484 *) echo wtf;;
485 esac
486 }
487
488 # Internal func. The first argument is the version info to expand.
489 # Query the preprocessor to improve compatibility across different
490 # compilers rather than maintaining a --version flag matrix. #335943
491 _gcc_fullversion() {
492 local ver="$1"; shift
493 set -- `$(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__"`
494 eval echo "$ver"
495 }
496
497 # @FUNCTION: gcc-fullversion
498 # @RETURN: compiler version (major.minor.micro: [3.4.6])
499 gcc-fullversion() {
500 _gcc_fullversion '$1.$2.$3' "$@"
501 }
502 # @FUNCTION: gcc-version
503 # @RETURN: compiler version (major.minor: [3.4].6)
504 gcc-version() {
505 _gcc_fullversion '$1.$2' "$@"
506 }
507 # @FUNCTION: gcc-major-version
508 # @RETURN: major compiler version (major: [3].4.6)
509 gcc-major-version() {
510 _gcc_fullversion '$1' "$@"
511 }
512 # @FUNCTION: gcc-minor-version
513 # @RETURN: minor compiler version (minor: 3.[4].6)
514 gcc-minor-version() {
515 _gcc_fullversion '$2' "$@"
516 }
517 # @FUNCTION: gcc-micro-version
518 # @RETURN: micro compiler version (micro: 3.4.[6])
519 gcc-micro-version() {
520 _gcc_fullversion '$3' "$@"
521 }
522
523 # Returns the installation directory - internal toolchain
524 # function for use by _gcc-specs-exists (for flag-o-matic).
525 _gcc-install-dir() {
526 echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\
527 awk '$1=="install:" {print $2}')"
528 }
529 # Returns true if the indicated specs file exists - internal toolchain
530 # function for use by flag-o-matic.
531 _gcc-specs-exists() {
532 [[ -f $(_gcc-install-dir)/$1 ]]
533 }
534
535 # Returns requested gcc specs directive unprocessed - for used by
536 # gcc-specs-directive()
537 # Note; later specs normally overwrite earlier ones; however if a later
538 # spec starts with '+' then it appends.
539 # gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
540 # as "Reading <file>", in order. Strictly speaking, if there's a
541 # $(gcc_install_dir)/specs, the built-in specs aren't read, however by
542 # the same token anything from 'gcc -dumpspecs' is overridden by
543 # the contents of $(gcc_install_dir)/specs so the result is the
544 # same either way.
545 _gcc-specs-directive_raw() {
546 local cc=$(tc-getCC)
547 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
548 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
549 'BEGIN { pspec=""; spec=""; outside=1 }
550 $1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
551 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
552 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
553 { spec=spec $0 }
554 END { print spec }'
555 return 0
556 }
557
558 # Return the requested gcc specs directive, with all included
559 # specs expanded.
560 # Note, it does not check for inclusion loops, which cause it
561 # to never finish - but such loops are invalid for gcc and we're
562 # assuming gcc is operational.
563 gcc-specs-directive() {
564 local directive subdname subdirective
565 directive="$(_gcc-specs-directive_raw $1)"
566 while [[ ${directive} == *%\(*\)* ]]; do
567 subdname=${directive/*%\(}
568 subdname=${subdname/\)*}
569 subdirective="$(_gcc-specs-directive_raw ${subdname})"
570 directive="${directive//\%(${subdname})/${subdirective}}"
571 done
572 echo "${directive}"
573 return 0
574 }
575
576 # Returns true if gcc sets relro
577 gcc-specs-relro() {
578 local directive
579 directive=$(gcc-specs-directive link_command)
580 return $([[ "${directive/\{!norelro:}" != "${directive}" ]])
581 }
582 # Returns true if gcc sets now
583 gcc-specs-now() {
584 local directive
585 directive=$(gcc-specs-directive link_command)
586 return $([[ "${directive/\{!nonow:}" != "${directive}" ]])
587 }
588 # Returns true if gcc builds PIEs
589 gcc-specs-pie() {
590 local directive
591 directive=$(gcc-specs-directive cc1)
592 return $([[ "${directive/\{!nopie:}" != "${directive}" ]])
593 }
594 # Returns true if gcc builds with the stack protector
595 gcc-specs-ssp() {
596 local directive
597 directive=$(gcc-specs-directive cc1)
598 return $([[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]])
599 }
600 # Returns true if gcc upgrades fstack-protector to fstack-protector-all
601 gcc-specs-ssp-to-all() {
602 local directive
603 directive=$(gcc-specs-directive cc1)
604 return $([[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]])
605 }
606 # Returns true if gcc builds with fno-strict-overflow
607 gcc-specs-nostrict() {
608 local directive
609 directive=$(gcc-specs-directive cc1)
610 return $([[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]])
611 }
612
613
614 # @FUNCTION: gen_usr_ldscript
615 # @USAGE: [-a] <list of libs to create linker scripts for>
616 # @DESCRIPTION:
617 # This function generate linker scripts in /usr/lib for dynamic
618 # libs in /lib. This is to fix linking problems when you have
619 # the .so in /lib, and the .a in /usr/lib. What happens is that
620 # in some cases when linking dynamic, the .a in /usr/lib is used
621 # instead of the .so in /lib due to gcc/libtool tweaking ld's
622 # library search path. This causes many builds to fail.
623 # See bug #4411 for more info.
624 #
625 # Note that you should in general use the unversioned name of
626 # the library (libfoo.so), as ldconfig should usually update it
627 # correctly to point to the latest version of the library present.
628 gen_usr_ldscript() {
629 local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname)
630 [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/
631
632 tc-is-static-only && return
633
634 # Eventually we'd like to get rid of this func completely #417451
635 case ${CTARGET:-${CHOST}} in
636 *-darwin*) ;;
637 *linux*|*-freebsd*|*-openbsd*|*-netbsd*)
638 use prefix && return 0 ;;
639 *) return 0 ;;
640 esac
641
642 # Just make sure it exists
643 dodir /usr/${libdir}
644
645 if [[ $1 == "-a" ]] ; then
646 auto=true
647 shift
648 dodir /${libdir}
649 fi
650
651 # OUTPUT_FORMAT gives hints to the linker as to what binary format
652 # is referenced ... makes multilib saner
653 local flags=( ${CFLAGS} ${LDFLAGS} -Wl,--verbose )
654 if $(tc-getLD) --version | grep -q 'GNU gold' ; then
655 # If they're using gold, manually invoke the old bfd. #487696
656 local d="${T}/bfd-linker"
657 mkdir -p "${d}"
658 ln -sf $(which ${CHOST}-ld.bfd) "${d}"/ld
659 flags+=( -B"${d}" )
660 fi
661 output_format=$($(tc-getCC) "${flags[@]}" 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
662 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
663
664 for lib in "$@" ; do
665 local tlib
666 if ${auto} ; then
667 lib="lib${lib}${suffix}"
668 else
669 # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks.
670 # This especially is for AIX where $(get_libname) can return ".a",
671 # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident).
672 [[ -r ${ED}/${libdir}/${lib} ]] || continue
673 #TODO: better die here?
674 fi
675
676 case ${CTARGET:-${CHOST}} in
677 *-darwin*)
678 if ${auto} ; then
679 tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
680 else
681 tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib})
682 fi
683 [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}"
684 tlib=${tlib##*/}
685
686 if ${auto} ; then
687 mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
688 # some install_names are funky: they encode a version
689 if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then
690 mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
691 fi
692 rm -f "${ED}"/${libdir}/${lib}
693 fi
694
695 # Mach-O files have an id, which is like a soname, it tells how
696 # another object linking against this lib should reference it.
697 # Since we moved the lib from usr/lib into lib this reference is
698 # wrong. Hence, we update it here. We don't configure with
699 # libdir=/lib because that messes up libtool files.
700 # Make sure we don't lose the specific version, so just modify the
701 # existing install_name
702 if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then
703 chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it
704 local nowrite=yes
705 fi
706 install_name_tool \
707 -id "${EPREFIX}"/${libdir}/${tlib} \
708 "${ED}"/${libdir}/${tlib} || die "install_name_tool failed"
709 [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}"
710 # Now as we don't use GNU binutils and our linker doesn't
711 # understand linker scripts, just create a symlink.
712 pushd "${ED}/usr/${libdir}" > /dev/null
713 ln -snf "../../${libdir}/${tlib}" "${lib}"
714 popd > /dev/null
715 ;;
716 *)
717 if ${auto} ; then
718 tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
719 [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}"
720 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
721 # some SONAMEs are funky: they encode a version before the .so
722 if [[ ${tlib} != ${lib}* ]] ; then
723 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
724 fi
725 rm -f "${ED}"/${libdir}/${lib}
726 else
727 tlib=${lib}
728 fi
729 cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
730 /* GNU ld script
731 Since Gentoo has critical dynamic libraries in /lib, and the static versions
732 in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we
733 run into linking problems. This "fake" dynamic lib is a linker script that
734 redirects the linker to the real lib. And yes, this works in the cross-
735 compiling scenario as the sysroot-ed linker will prepend the real path.
736
737 See bug http://bugs.gentoo.org/4411 for more info.
738 */
739 ${output_format}
740 GROUP ( ${EPREFIX}/${libdir}/${tlib} )
741 END_LDSCRIPT
742 ;;
743 esac
744 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
745 done
746 }
747
748 fi

  ViewVC Help
Powered by ViewVC 1.1.20