/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Contents of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.74 - (show annotations) (download)
Fri Aug 17 10:14:13 2007 UTC (7 years, 2 months ago) by vapier
Branch: MAIN
Changes since 1.73: +90 -36 lines
add new documentation

1 # Copyright 1999-2007 Gentoo Foundation
2 # Distributed under the terms of the GNU General Public License v2
3 # $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.73 2007/07/22 19:59:48 vapier Exp $
4
5 # @ECLASS: toolchain-funcs.eclass
6 # @MAINTAINER:
7 # Toolchain Ninjas <toolchain@gentoo.org>
8 # @BLURB: functions to query common info about the toolchain
9 # @DESCRIPTION:
10 # The toolchain-funcs aims to provide a complete suite of functions
11 # for gleaning useful information about the toolchain and to simplify
12 # ugly things like cross-compiling and multilib. All of this is done
13 # in such a way that you can rely on the function always returning
14 # something sane.
15
16 ___ECLASS_RECUR_TOOLCHAIN_FUNCS="yes"
17 [[ -z ${___ECLASS_RECUR_MULTILIB} ]] && inherit multilib
18
19 DESCRIPTION="Based on the ${ECLASS} eclass"
20
21 tc-getPROG() {
22 local var=$1
23 local prog=$2
24
25 if [[ -n ${!var} ]] ; then
26 echo "${!var}"
27 return 0
28 fi
29
30 local search=
31 [[ -n $3 ]] && search=$(type -p "$3-${prog}")
32 [[ -z ${search} && -n ${CHOST} ]] && search=$(type -p "${CHOST}-${prog}")
33 [[ -n ${search} ]] && prog=${search##*/}
34
35 export ${var}=${prog}
36 echo "${!var}"
37 }
38
39 # @FUNCTION: tc-getAR
40 # @USAGE: [toolchain prefix]
41 # @RETURN: name of the archiver
42 tc-getAR() { tc-getPROG AR ar "$@"; }
43 # @FUNCTION: tc-getAS
44 # @USAGE: [toolchain prefix]
45 # @RETURN: name of the assembler
46 tc-getAS() { tc-getPROG AS as "$@"; }
47 # @FUNCTION: tc-getCC
48 # @USAGE: [toolchain prefix]
49 # @RETURN: name of the C compiler
50 tc-getCC() { tc-getPROG CC gcc "$@"; }
51 # @FUNCTION: tc-getCPP
52 # @USAGE: [toolchain prefix]
53 # @RETURN: name of the C preprocessor
54 tc-getCPP() { tc-getPROG CPP cpp "$@"; }
55 # @FUNCTION: tc-getCXX
56 # @USAGE: [toolchain prefix]
57 # @RETURN: name of the C++ compiler
58 tc-getCXX() { tc-getPROG CXX g++ "$@"; }
59 # @FUNCTION: tc-getLD
60 # @USAGE: [toolchain prefix]
61 # @RETURN: name of the linker
62 tc-getLD() { tc-getPROG LD ld "$@"; }
63 # @FUNCTION: tc-getSTRIP
64 # @USAGE: [toolchain prefix]
65 # @RETURN: name of the strip program
66 tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
67 # @FUNCTION: tc-getNM
68 # @USAGE: [toolchain prefix]
69 # @RETURN: name of the symbol/object thingy
70 tc-getNM() { tc-getPROG NM nm "$@"; }
71 # @FUNCTION: tc-getRANLIB
72 # @USAGE: [toolchain prefix]
73 # @RETURN: name of the archiver indexer
74 tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
75 # @FUNCTION: tc-getF77
76 # @USAGE: [toolchain prefix]
77 # @RETURN: name of the Fortran 77 compiler
78 tc-getF77() { tc-getPROG F77 f77 "$@"; }
79 # @FUNCTION: tc-getF90
80 # @USAGE: [toolchain prefix]
81 # @RETURN: name of the Fortran 90 compiler
82 tc-getF90() { tc-getPROG F90 gfortran "$@"; }
83 # @FUNCTION: tc-getFORTRAN
84 # @USAGE: [toolchain prefix]
85 # @RETURN: name of the Fortran compiler
86 tc-getFORTRAN() { tc-getPROG FORTRAN gfortran "$@"; }
87 # @FUNCTION: tc-getGCJ
88 # @USAGE: [toolchain prefix]
89 # @RETURN: name of the java compiler
90 tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
91
92 # @FUNCTION: tc-getBUILD_CC
93 # @USAGE: [toolchain prefix]
94 # @RETURN: name of the C compiler for building binaries to run on the build machine
95 tc-getBUILD_CC() {
96 local v
97 for v in CC_FOR_BUILD BUILD_CC HOSTCC ; do
98 if [[ -n ${!v} ]] ; then
99 export BUILD_CC=${!v}
100 echo "${!v}"
101 return 0
102 fi
103 done
104
105 local search=
106 if [[ -n ${CBUILD} ]] ; then
107 search=$(type -p ${CBUILD}-gcc)
108 search=${search##*/}
109 fi
110 search=${search:-gcc}
111
112 export BUILD_CC=${search}
113 echo "${search}"
114 }
115
116 # @FUNCTION: tc-export
117 # @USAGE: <list of toolchain variables>
118 # @DESCRIPTION:
119 # Quick way to export a bunch of compiler vars at once.
120 tc-export() {
121 local var
122 for var in "$@" ; do
123 eval tc-get${var} > /dev/null
124 done
125 }
126
127 # @FUNCTION: tc-is-cross-compiler
128 # @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
129 tc-is-cross-compiler() {
130 return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]])
131 }
132
133 # @FUNCTION: tc-is-softfloat
134 # @DESCRIPTION:
135 # See if this toolchain is a softfloat based one.
136 # @CODE
137 # The possible return values:
138 # - only: the target is always softfloat (never had fpu)
139 # - yes: the target should support softfloat
140 # - no: the target should support hardfloat
141 # @CODE
142 # This allows us to react differently where packages accept
143 # softfloat flags in the case where support is optional, but
144 # rejects softfloat flags where the target always lacks an fpu.
145 tc-is-softfloat() {
146 case ${CTARGET} in
147 bfin*|h8300*)
148 echo "only" ;;
149 *)
150 [[ ${CTARGET//_/-} == *-softfloat-* ]] \
151 && echo "yes" \
152 || echo "no"
153 ;;
154 esac
155 }
156
157 # Parse information from CBUILD/CHOST/CTARGET rather than
158 # use external variables from the profile.
159 tc-ninja_magic_to_arch() {
160 ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
161
162 local type=$1
163 local host=$2
164 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
165
166 case ${host} in
167 alpha*) echo alpha;;
168 arm*) echo arm;;
169 avr*) ninj avr32 avr;;
170 bfin*) ninj blackfin bfin;;
171 cris*) echo cris;;
172 hppa*) ninj parisc hppa;;
173 i?86*) ninj i386 x86;;
174 ia64*) echo ia64;;
175 m68*) echo m68k;;
176 mips*) echo mips;;
177 nios2*) echo nios2;;
178 nios*) echo nios;;
179 powerpc*)
180 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
181 # have been unified into simply 'powerpc', but until 2.6.16,
182 # ppc32 is still using ARCH="ppc" as default
183 if [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] && [[ ${type} == "kern" ]] ; then
184 echo powerpc
185 elif [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] && [[ ${type} == "kern" ]] ; then
186 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
187 echo powerpc
188 else
189 echo ppc
190 fi
191 elif [[ ${host} == powerpc64* ]] ; then
192 echo ppc64
193 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
194 ninj ppc64 ppc
195 else
196 echo ppc
197 fi
198 ;;
199 s390*) echo s390;;
200 sh64*) ninj sh64 sh;;
201 sh*) echo sh;;
202 sparc64*) ninj sparc64 sparc;;
203 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
204 && ninj sparc64 sparc \
205 || echo sparc
206 ;;
207 vax*) echo vax;;
208 x86_64*) ninj x86_64 amd64;;
209
210 # since our usage of tc-arch is largely concerned with
211 # normalizing inputs for testing ${CTARGET}, let's filter
212 # other cross targets (mingw and such) into the unknown.
213 *) echo unknown;;
214 esac
215 }
216 # @FUNCTION: tc-arch-kernel
217 # @USAGE: [toolchain prefix]
218 # @RETURN: name of the kernel arch according to the compiler target
219 tc-arch-kernel() {
220 tc-ninja_magic_to_arch kern "$@"
221 }
222 # @FUNCTION: tc-arch
223 # @USAGE: [toolchain prefix]
224 # @RETURN: name of the portage arch according to the compiler target
225 tc-arch() {
226 tc-ninja_magic_to_arch portage "$@"
227 }
228
229 tc-endian() {
230 local host=$1
231 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
232 host=${host%%-*}
233
234 case ${host} in
235 alpha*) echo big;;
236 arm*b*) echo big;;
237 arm*) echo little;;
238 cris*) echo little;;
239 hppa*) echo big;;
240 i?86*) echo little;;
241 ia64*) echo little;;
242 m68*) echo big;;
243 mips*l*) echo little;;
244 mips*) echo big;;
245 powerpc*) echo big;;
246 s390*) echo big;;
247 sh*b*) echo big;;
248 sh*) echo little;;
249 sparc*) echo big;;
250 x86_64*) echo little;;
251 *) echo wtf;;
252 esac
253 }
254
255 # @FUNCTION: gcc-fullversion
256 # @RETURN: compiler version (major.minor.micro: [3.4.6])
257 gcc-fullversion() {
258 $(tc-getCC "$@") -dumpversion
259 }
260 # @FUNCTION: gcc-version
261 # @RETURN: compiler version (major.minor: [3.4].6)
262 gcc-version() {
263 gcc-fullversion "$@" | cut -f1,2 -d.
264 }
265 # @FUNCTION: gcc-major-version
266 # @RETURN: major compiler version (major: [3].4.6)
267 gcc-major-version() {
268 gcc-version "$@" | cut -f1 -d.
269 }
270 # @FUNCTION: gcc-minor-version
271 # @RETURN: minor compiler version (minor: 3.[4].6)
272 gcc-minor-version() {
273 gcc-version "$@" | cut -f2 -d.
274 }
275 # @FUNCTION: gcc-micro-version
276 # @RETURN: micro compiler version (micro: 3.4.[6])
277 gcc-micro-version() {
278 gcc-fullversion "$@" | cut -f3 -d. | cut -f1 -d-
279 }
280
281 # Returns the installation directory - internal toolchain
282 # function for use by _gcc-specs-exists (for flag-o-matic).
283 _gcc-install-dir() {
284 echo "$($(tc-getCC) -print-search-dirs 2> /dev/null |\
285 awk '$1=="install:" {print $2}')"
286 }
287 # Returns true if the indicated specs file exists - internal toolchain
288 # function for use by flag-o-matic.
289 _gcc-specs-exists() {
290 [[ -f $(_gcc-install-dir)/$1 ]]
291 }
292
293 # Returns requested gcc specs directive unprocessed - for used by
294 # gcc-specs-directive()
295 # Note; later specs normally overwrite earlier ones; however if a later
296 # spec starts with '+' then it appends.
297 # gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
298 # as "Reading <file>", in order. Strictly speaking, if there's a
299 # $(gcc_install_dir)/specs, the built-in specs aren't read, however by
300 # the same token anything from 'gcc -dumpspecs' is overridden by
301 # the contents of $(gcc_install_dir)/specs so the result is the
302 # same either way.
303 _gcc-specs-directive_raw() {
304 local cc=$(tc-getCC)
305 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
306 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
307 'BEGIN { pspec=""; spec=""; outside=1 }
308 $1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
309 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
310 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
311 { spec=spec $0 }
312 END { print spec }'
313 return 0
314 }
315
316 # Return the requested gcc specs directive, with all included
317 # specs expanded.
318 # Note, it does not check for inclusion loops, which cause it
319 # to never finish - but such loops are invalid for gcc and we're
320 # assuming gcc is operational.
321 gcc-specs-directive() {
322 local directive subdname subdirective
323 directive="$(_gcc-specs-directive_raw $1)"
324 while [[ ${directive} == *%\(*\)* ]]; do
325 subdname=${directive/*%\(}
326 subdname=${subdname/\)*}
327 subdirective="$(_gcc-specs-directive_raw ${subdname})"
328 directive="${directive//\%(${subdname})/${subdirective}}"
329 done
330 echo "${directive}"
331 return 0
332 }
333
334 # Returns true if gcc sets relro
335 gcc-specs-relro() {
336 local directive
337 directive=$(gcc-specs-directive link_command)
338 return $([[ ${directive/\{!norelro:} != ${directive} ]])
339 }
340 # Returns true if gcc sets now
341 gcc-specs-now() {
342 local directive
343 directive=$(gcc-specs-directive link_command)
344 return $([[ ${directive/\{!nonow:} != ${directive} ]])
345 }
346 # Returns true if gcc builds PIEs
347 gcc-specs-pie() {
348 local directive
349 directive=$(gcc-specs-directive cc1)
350 return $([[ ${directive/\{!nopie:} != ${directive} ]])
351 }
352 # Returns true if gcc builds with the stack protector
353 gcc-specs-ssp() {
354 local directive
355 directive=$(gcc-specs-directive cc1)
356 return $([[ ${directive/\{!fno-stack-protector:} != ${directive} ]])
357 }
358 # Returns true if gcc upgrades fstack-protector to fstack-protector-all
359 gcc-specs-ssp-to-all() {
360 local directive
361 directive=$(gcc-specs-directive cc1)
362 return $([[ ${directive/\{!fno-stack-protector-all:} != ${directive} ]])
363 }
364
365
366 # @FUNCTION: gen_usr_ldscript
367 # @USAGE: <list of libs to create linker scripts for>
368 # @DESCRIPTION:
369 # This function generate linker scripts in /usr/lib for dynamic
370 # libs in /lib. This is to fix linking problems when you have
371 # the .so in /lib, and the .a in /usr/lib. What happens is that
372 # in some cases when linking dynamic, the .a in /usr/lib is used
373 # instead of the .so in /lib due to gcc/libtool tweaking ld's
374 # library search path. This causes many builds to fail.
375 # See bug #4411 for more info.
376 #
377 # Note that you should in general use the unversioned name of
378 # the library (libfoo.so), as ldconfig should usually update it
379 # correctly to point to the latest version of the library present.
380 gen_usr_ldscript() {
381 local lib libdir=$(get_libdir) output_format=""
382 # Just make sure it exists
383 dodir /usr/${libdir}
384
385 # OUTPUT_FORMAT gives hints to the linker as to what binary format
386 # is referenced ... makes multilib saner
387 output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
388 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
389
390 for lib in "$@" ; do
391 if [[ ${USERLAND} == "Darwin" ]] ; then
392 ewarn "Not creating fake dynamic library for $lib on Darwin;"
393 ewarn "making a symlink instead."
394 dosym "/${libdir}/${lib}" "/usr/${libdir}/${lib}"
395 else
396 cat > "${D}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
397 /* GNU ld script
398 Since Gentoo has critical dynamic libraries
399 in /lib, and the static versions in /usr/lib,
400 we need to have a "fake" dynamic lib in /usr/lib,
401 otherwise we run into linking problems.
402
403 See bug http://bugs.gentoo.org/4411 for more info.
404 */
405 ${output_format}
406 GROUP ( /${libdir}/${lib} )
407 END_LDSCRIPT
408 fi
409 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
410 done
411 }

  ViewVC Help
Powered by ViewVC 1.1.20