/[gentoo]/xml/htdocs/doc/en/handbook/hb-install-ppc-disk.xml
Gentoo

Contents of /xml/htdocs/doc/en/handbook/hb-install-ppc-disk.xml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.9 - (hide annotations) (download) (as text)
Fri Jul 16 09:37:11 2004 UTC (10 years, 4 months ago) by neysx
Branch: MAIN
Changes since 1.8: +2 -2 lines
File MIME type: application/xml
#57267: performant is not proper English

1 swift 1.1 <?xml version='1.0' encoding='UTF-8'?>
2     <!DOCTYPE sections SYSTEM "/dtd/book.dtd">
3    
4     <!-- The content of this document is licensed under the CC-BY-SA license -->
5     <!-- See http://creativecommons.org/licenses/by-sa/1.0 -->
6    
7 neysx 1.9 <!-- $Header: /home/cvsroot/gentoo/xml/htdocs/doc/en/handbook/hb-install-ppc-disk.xml,v 1.8 2004/05/03 07:53:45 swift Exp $ -->
8 swift 1.1
9     <sections>
10     <section>
11     <title>Introduction to Block Devices</title>
12     <subsection>
13     <title>Block Devices</title>
14     <body>
15    
16     <p>
17     We'll take a good look at disk-oriented aspects of Gentoo Linux
18     and Linux in general, including Linux filesystems, partitions and block devices.
19     Then, once you're familiar with the ins and outs of disks and filesystems,
20     you'll be guided through the process of setting up partitions and filesystems
21     for your Gentoo Linux installation.
22     </p>
23    
24     <p>
25     To begin, we'll introduce <e>block devices</e>. The most famous block device is
26     probably the one that represents the first IDE drive in a Linux system, namely
27     <path>/dev/hda</path>. If your system uses SCSI drives, then your first hard
28     drive would be <path>/dev/sda</path>.
29     </p>
30    
31     <p>
32     The block devices above represent an abstract interface to the disk. User
33     programs can use these block devices to interact with your disk without worrying
34     about whether your drives are IDE, SCSI or something else. The program can
35     simply address the storage on the disk as a bunch of contiguous,
36     randomly-accessible 512-byte blocks.
37     </p>
38    
39     </body>
40     </subsection>
41     <subsection>
42     <title>Partitions and Slices</title>
43     <body>
44    
45     <p>
46     Although it is theoretically possible to use a full disk to house your Linux
47     system, this is almost never done in practice. Instead, full disk block devices
48     are split up in smaller, more manageable block devices. On most systems,
49     these are called <e>partitions</e>. Other architectures use a similar technique,
50     called <e>slices</e>.
51     </p>
52    
53     </body>
54     </subsection>
55     </section>
56     <section>
57     <title>Designing a Partitioning Scheme</title>
58     <subsection>
59     <title>Default Partitioning Scheme</title>
60     <body>
61    
62     <p>
63     If you are not interested in drawing up a partitioning scheme for your system,
64     you can use the partitioning scheme we use throughout this book:
65     </p>
66    
67     <table>
68     <tr>
69     <th>Partition NewWorld</th>
70     <th>Partition OldWorld</th>
71 swift 1.8 <th>Partition Pegasos</th>
72 swift 1.1 <th>Filesystem</th>
73     <th>Size</th>
74     <th>Description</th>
75     </tr>
76     <tr>
77     <ti><path>/dev/hda1</path></ti>
78     <ti>(Not needed)</ti>
79 swift 1.8 <ti>(Not applicable)</ti>
80 swift 1.1 <ti>(bootstrap)</ti>
81     <ti>800k</ti>
82     <ti>Apple_Bootstrap</ti>
83     </tr>
84     <tr>
85     <ti><path>/dev/hda2</path></ti>
86     <ti><path>/dev/hda1</path></ti>
87 swift 1.8 <ti><path>/dev/hda1</path></ti>
88 swift 1.1 <ti>(swap)</ti>
89     <ti>512M</ti>
90     <ti>Swap partition</ti>
91     </tr>
92     <tr>
93     <ti><path>/dev/hda3</path></ti>
94     <ti><path>/dev/hda2</path></ti>
95 swift 1.8 <ti><path>/dev/hda2</path></ti>
96 swift 1.1 <ti>ext3</ti>
97     <ti>Rest of the disk</ti>
98     <ti>Root partition</ti>
99     </tr>
100     </table>
101    
102     <p>
103     If you are interested in knowing how big a partition should be, or even how
104     many partitions you need, read on. Otherwise continue now with
105 swift 1.6 <uri link="#fdisk">Default: Using mac-fdisk (Apple/IBM) to Partition your
106     Disk</uri> or <uri link="#parted">Alternative: Using parted (Pegasos) to
107     Partition your Disk</uri>.
108 swift 1.1 </p>
109    
110     </body>
111     </subsection>
112     <subsection>
113     <title>How Many and How Big?</title>
114     <body>
115    
116     <p>
117     The number of partitions is highly dependent on your environment. For instance,
118     if you have lots of users, you will most likely want to have your
119     <path>/home</path> separate as it increases security and makes backups easier.
120     If you are installing Gentoo to perform as a mailserver, your
121     <path>/var</path> should be separate as all mails are stored inside
122     <path>/var</path>. A good choice of filesystem will then maximise your
123     performance. Gameservers will have a separate <path>/opt</path> as most gaming
124     servers are installed there. The reason is similar for <path>/home</path>:
125     security and backups.
126     </p>
127    
128     <p>
129     As you can see, it very much depends on what you want to achieve. Separate
130     partitions or volumes have the following advantages:
131     </p>
132    
133     <ul>
134     <li>
135 neysx 1.9 You can choose the best performing filesystem for each partition or volume
136 swift 1.1 </li>
137     <li>
138     Your entire system cannot run out of free space if one defunct tool is
139     continuously writing files to a partition or volume
140     </li>
141     <li>
142     If necessary, file system checks are reduced in time, as multiple checks can
143     be done in parallel (although this advantage is more with multiple disks than
144     it is with multiple partitions)
145     </li>
146     <li>
147     Security can be enhanced by mounting some partitions or volumes read-only,
148     nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.
149     </li>
150     </ul>
151    
152     <p>
153     However, multiple partitions have one big disadvantage: if not configured
154     properly, you might result in having a system with lots
155     of free space on one partition and none on another.
156     </p>
157    
158     </body>
159     </subsection>
160     </section>
161 neysx 1.2 <section id="fdisk">
162 swift 1.6 <title>Default: Using mac-fdisk (Apple/IBM) Partition your Disk</title>
163 swift 1.1 <body>
164    
165     <p>
166     At this point, create your partitions using <c>mac-fdisk</c>:
167     </p>
168    
169     <pre caption="Starting mac-fdisk">
170     # <i>mac-fdisk /dev/hda</i>
171     </pre>
172    
173     <p>
174     First delete the partitions you have cleared previously to make room for your
175     Linux partitions. Use <c>d</c> in <c>mac-fdisk</c> to delete those partition(s).
176     It will ask for the partition number to delete.
177     </p>
178    
179     <p>
180     Second, create an <e>Apple_Bootstrap</e> partition by using <c>b</c>. It will
181 pylon 1.4 ask for what block you want to start. Enter the number of your first free
182 pylon 1.5 partition, followed by a <c>p</c>. For instance this is <c>1p</c>.
183 swift 1.1 </p>
184    
185     <note>
186     This partition is <e>not</e> a "boot" partition. It is not used by Linux at all;
187     you don't have to place any filesystem on it and you should never mount it. PPC
188 pylon 1.4 users don't need a an extra partition for <path>/boot</path>.
189 swift 1.1 </note>
190    
191     <p>
192     Now create a swap partition by pressing <c>c</c>. Again <c>mac-fdisk</c> will
193 pylon 1.5 ask for what block you want to start this partition from. As we used <c>1</c>
194 swift 1.1 before to create the Apple_Bootstrap partition, you now have to enter
195 pylon 1.5 <c>2p</c>. When you're asked for the size, enter <c>512M</c> (or whatever size
196 pylon 1.4 you want -- 512MB is recommended though). When asked for a name, enter <c>swap</c>
197 swift 1.1 (mandatory).
198     </p>
199    
200     <p>
201 pylon 1.5 To create the root partition, enter <c>c</c>, followed by <c>3p</c> to select
202 swift 1.1 from what block the root partition should start. When asked for the size, enter
203 pylon 1.5 <c>3p</c> again. <c>mac-fdisk</c> will interpret this as "Use all available
204 swift 1.1 space". When asked for the name, enter <c>root</c> (mandatory).
205     </p>
206    
207     <p>
208     To finish up, write the partition to the disk using <c>w</c> and <c>q</c> to
209     quit <c>mac-fdisk</c>.
210     </p>
211    
212     <p>
213     Now that your partitions are created, you can now continue with <uri
214     link="#filesystems">Creating Filesystems</uri>.
215     </p>
216    
217     </body>
218     </section>
219 swift 1.6 <section id="parted">
220     <title>Using parted (Pegasos) to Partition your Disk</title>
221     <body>
222    
223     <p>
224     To begin let's fire up <c>parted</c>:
225     </p>
226    
227     <pre caption="Starting parted">
228     # <i>parted /dev/hda</i>
229     </pre>
230    
231     <p>
232     If the drive is unpartitioned, run <c>mklabel amiga</c> to create a new
233     disklabel for the drive.
234     </p>
235    
236     <p>
237     You can type <c>print</c> at any time in parted to display the current partition
238     table. Your changes aren't saved until you quit the application; if at any time
239     you change your mind or made a mistake you can press <c>Ctrl-c</c> to abort
240     parted.
241     </p>
242    
243     <p>
244     If you intend to also install MorphOS on your Pegasos create an affs1 filesystem
245     named "BI0" (BI zero) at the start of the drive. 50MB should be more than enough
246     to store the MorphOS kernel. If you have a Pegasos I or intend to use reiserfs,
247     xfs or jfs you will also have to store your Linux kernel on this partition (the
248     Pegasos II can boot from ext2/ext3 drives). To create the partition run
249     <c>mkpart primary affs1 START END</c> where <c>START</c> and <c>END</c> should
250     be replaced with the megabyte range (f.i. <c>5 55</c> creates a 50 MB partition
251     starting at 5MB and ending at 55MB.
252     </p>
253    
254     <p>
255     You need to create two partitions for Linux, one root filesystem for all your
256     program files etc, and one swap partition. To create the root filesystem you
257     must first decide which filesystem to use. Possible options are ext2, ext3,
258 bennyc 1.7 reiserfs, jfs and xfs. Unless you know what you are doing, use ext3. Run
259 swift 1.6 <c>mkpart primary ext3 START END</c> to create an ext3 partition. Again, replace
260     <c>START</c> and <c>END</c> with the megabyte start and stop marks for the
261     partition.
262     </p>
263    
264     <p>
265     It is generally recommended that you create a swap partition the same size as
266     the amount of RAM in your computer times two. You will probably get away with a
267     smaller swap partition unless you intend to run a lot of applications at the
268     same time (although at least 512MB is recommended). To create the swap
269     partition, run <c>mkpart primary linux-swap START END</c>.
270     </p>
271    
272     <p>
273     Write down the partition minor numbers as they are required during the
274     installation process. To dislay the minor numbers run <c>print</c>. Your drives
275     are accessed as <path>/dev/hdaX</path> where X is replaced with the minor number
276     of the partition.
277     </p>
278    
279     <p>
280     When you are done in parted simply run <c>quit</c>.
281     </p>
282    
283     </body>
284     </section>
285 swift 1.1 <section id="filesystems">
286     <title>Creating Filesystems</title>
287     <subsection>
288     <title>Introduction</title>
289     <body>
290    
291     <p>
292     Now that your partitions are created, it is time to place a filesystem on them.
293     If you don't care about what filesystem to choose and are happy with what we use
294     as default in this handbook, continue with <uri
295     link="#filesystems-apply">Applying a Filesystem to a Partition</uri>.
296     Otherwise read on to learn about the available filesystems...
297     </p>
298    
299     </body>
300     </subsection>
301     <subsection>
302     <title>Filesystems?</title>
303     <body>
304    
305     <p>
306     Several filesystems are available. Ext2 and ext3 are found stable on the
307     PPC architecture, reiserfs and xfs are in experimental stage. jfs is
308     unsupported.
309     </p>
310    
311     <p>
312     <b>ext2</b> is the tried and true Linux filesystem but doesn't have metadata
313     journaling, which means that routine ext2 filesystem checks at startup time can
314     be quite time-consuming. There is now quite a selection of newer-generation
315     journaled filesystems that can be checked for consistency very quickly and are
316     thus generally preferred over their non-journaled counterparts. Journaled
317     filesystems prevent long delays when you boot your system and your filesystem
318     happens to be in an inconsistent state.
319     </p>
320    
321     <p>
322     <b>ext3</b> is the journaled version of the ext2 filesystem, providing metadata
323     journaling for fast recovery in addition to other enhanced journaling modes like
324     full data and ordered data journaling. ext3 is a very good and reliable
325     filesystem. It has an additional hashed b-tree indexing option that enables
326     high performance in almost all situations. In short, ext3 is an excellent
327     filesystem.
328     </p>
329    
330     <p>
331     <b>ReiserFS</b> is a B*-tree based filesystem that has very good overall
332     performance and greatly outperforms both ext2 and ext3 when dealing with small
333     files (files less than 4k), often by a factor of 10x-15x. ReiserFS also scales
334     extremely well and has metadata journaling. As of kernel 2.4.18+, ReiserFS is
335     solid and usable as both general-purpose filesystem and for extreme cases such
336     as the creation of large filesystems, the use of many small files, very large
337     files and directories containing tens of thousands of files.
338     </p>
339    
340     <p>
341     <b>XFS</b> is a filesystem with metadata journaling that is fully supported
342     under Gentoo Linux's xfs-sources kernel. It comes with a robust feature-set and
343     is optimized for scalability. We only recommend using this filesystem on Linux
344     systems with high-end SCSI and/or fibre channel storage and a uninterruptible
345     power supply. Because XFS aggressively caches in-transit data in RAM, improperly
346     designed programs (those that don't take proper precautions when writing files
347     to disk and there are quite a few of them) can lose a good deal of data if the
348     system goes down unexpectedly.
349     </p>
350    
351     <p>
352     <b>JFS</b> is IBM's high-performance journaling filesystem. It has recently
353     become production-ready and there hasn't been a sufficient track record to
354     comment positively nor negatively on its general stability at this point.
355     </p>
356    
357     </body>
358     </subsection>
359     <subsection id="filesystems-apply">
360     <title>Applying a Filesystem to a Partition</title>
361     <body>
362    
363     <p>
364     To create a filesystem on a partition or volume, there are tools available for
365     each possible filesystem:
366     </p>
367    
368     <table>
369     <tr>
370     <th>Filesystem</th>
371     <th>Creation Command</th>
372     </tr>
373     <tr>
374     <ti>ext2</ti>
375     <ti><c>mke2fs</c></ti>
376     </tr>
377     <tr>
378     <ti>ext3</ti>
379     <ti><c>mke2fs -j</c></ti>
380     </tr>
381     <tr>
382     <ti>reiserfs</ti>
383     <ti><c>mkreiserfs</c></ti>
384     </tr>
385     <tr>
386     <ti>xfs</ti>
387     <ti><c>mkfs.xfs</c></ti>
388     </tr>
389     <tr>
390     <ti>jfs</ti>
391     <ti><c>mkfs.jfs</c></ti>
392     </tr>
393     </table>
394    
395     <p>
396     For instance, to have the root partition (<path>/dev/hda3</path> in our example)
397     in ext3 (as in our example), you would use:
398     </p>
399    
400     <pre caption="Applying a filesystem on a partition">
401     # <i>mke2fs -j /dev/hda3</i>
402     </pre>
403    
404     <p>
405     Now create the filesystems on your newly created partitions (or logical
406     volumes).
407     </p>
408    
409     </body>
410     </subsection>
411     <subsection>
412     <title>Activating the Swap Partition</title>
413     <body>
414    
415     <p>
416     <c>mkswap</c> is the command that is used to initialize swap partitions:
417     </p>
418    
419     <pre caption="Creating a Swap signature">
420 pylon 1.5 # <i>mkswap /dev/hda2</i>
421 swift 1.1 </pre>
422    
423     <p>
424     To activate the swap partition, use <c>swapon</c>:
425     </p>
426    
427     <pre caption="Activating the swap partition">
428 pylon 1.5 # <i>swapon /dev/hda2</i>
429 swift 1.1 </pre>
430    
431     <p>
432     Create and activate the swap now.
433     </p>
434    
435     </body>
436     </subsection>
437     </section>
438     <section>
439     <title>Mounting</title>
440     <body>
441    
442     <p>
443     Now that your partitions are initialized and are housing a filesystem, it is
444     time to mount those partitions. Use the <c>mount</c> command. Don't forget to
445     create the necessary mount directories for every partition you created. As an
446 pylon 1.4 example we create a mount-point and mount the root and boot partition:
447 swift 1.1 </p>
448    
449     <pre caption="Mounting partitions">
450 pylon 1.4 # <i>mkdir /mnt/gentoo</i>
451 swift 1.1 # <i>mount /dev/hda3 /mnt/gentoo</i>
452     </pre>
453    
454     <note>
455     If you want your <path>/tmp</path> to reside on a separate partition, be sure to
456     change its permissions after mounting: <c>chmod 1777 /mnt/gentoo/tmp</c>. This
457     also holds for <path>/var/tmp</path>.
458     </note>
459    
460     <p>
461     We also need to mount the proc filesystem (a virtual interface with the kernel)
462     on <path>/proc</path>. We first create the <path>/mnt/gentoo/proc</path>
463     mountpoint and then mount the filesystem:
464     </p>
465    
466     <pre caption="Creating the /mnt/gentoo/proc mountpoint">
467     # <i>mkdir /mnt/gentoo/proc</i>
468     # <i>mount -t proc none /mnt/gentoo/proc</i>
469     </pre>
470    
471     <p>
472 pylon 1.4 Finally we have to create the <path>/dev</path> files in our new home, which is
473     needed during the bootloader installation. This could be done by "bind"-mapping
474     the <path>/dev</path>-filesystem from the LiveCD:
475     </p>
476    
477     <pre caption="Bind-mounting the /dev-filesystem">
478     # <i>mkdir /mnt/gentoo/dev</i>
479     # <i>mount -o bind /dev /mnt/gentoo/dev</i>
480     </pre>
481    
482     <p>
483 swift 1.1 Now continue with <uri link="?part=1&amp;chap=5">Installing the Gentoo
484     Installation Files</uri>.
485     </p>
486    
487     </body>
488     </section>
489     </sections>

  ViewVC Help
Powered by ViewVC 1.1.20