/[gentoo]/xml/htdocs/doc/en/handbook/hb-install-ppc64-disk.xml
Gentoo

Contents of /xml/htdocs/doc/en/handbook/hb-install-ppc64-disk.xml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.24 - (hide annotations) (download) (as text)
Mon Feb 27 00:55:34 2006 UTC (8 years, 5 months ago) by fox2mike
Branch: MAIN
Changes since 1.23: +17 -8 lines
File MIME type: application/xml
Handbook for 2006.0, "Chuck Norris can divide by zero"

1 swift 1.1 <?xml version='1.0' encoding='UTF-8'?>
2     <!DOCTYPE sections SYSTEM "/dtd/book.dtd">
3    
4     <!-- The content of this document is licensed under the CC-BY-SA license -->
5 swift 1.19 <!-- See http://creativecommons.org/licenses/by-sa/2.5 -->
6 swift 1.1
7 fox2mike 1.24 <!-- $Header: /var/cvsroot/gentoo/xml/htdocs/doc/en/handbook/draft/hb-install-ppc64-disk.xml,v 1.13 2006/02/26 18:20:29 fox2mike Exp $ -->
8 swift 1.1
9     <sections>
10 swift 1.8
11 fox2mike 1.24 <version>2.7</version>
12     <date>2006-02-27</date>
13 swift 1.8
14 swift 1.1 <section>
15     <title>Introduction to Block Devices</title>
16     <subsection>
17     <title>Block Devices</title>
18     <body>
19    
20     <p>
21     We'll take a good look at disk-oriented aspects of Gentoo Linux
22     and Linux in general, including Linux filesystems, partitions and block devices.
23     Then, once you're familiar with the ins and outs of disks and filesystems,
24     you'll be guided through the process of setting up partitions and filesystems
25     for your Gentoo Linux installation.
26     </p>
27    
28     <p>
29     To begin, we'll introduce <e>block devices</e>. The most famous block device is
30     probably the one that represents the first IDE drive in a Linux system, namely
31     <path>/dev/hda</path>. If your system uses SCSI drives, then your first hard
32     drive would be <path>/dev/sda</path>. Serial ATA drives are also
33     <path>/dev/sda</path> even if they are IDE drives.
34     </p>
35    
36     <p>
37     The block devices above represent an abstract interface to the disk. User
38     programs can use these block devices to interact with your disk without worrying
39     about whether your drives are IDE, SCSI or something else. The program can
40     simply address the storage on the disk as a bunch of contiguous,
41     randomly-accessible 512-byte blocks.
42     </p>
43    
44     </body>
45     </subsection>
46     <subsection>
47     <title>Partitions and Slices</title>
48     <body>
49    
50     <p>
51     Although it is theoretically possible to use a full disk to house your Linux
52     system, this is almost never done in practice. Instead, full disk block devices
53     are split up in smaller, more manageable block devices. On most systems,
54     these are called <e>partitions</e>. Other architectures use a similar technique,
55     called <e>slices</e>.
56     </p>
57    
58     </body>
59     </subsection>
60     </section>
61     <section>
62     <title>Designing a Partitioning Scheme</title>
63     <subsection>
64     <title>Default Partitioning Scheme</title>
65     <body>
66    
67     <p>
68     If you are not interested in drawing up a partitioning scheme for your system,
69     you can use the partitioning scheme we use throughout this book:
70     </p>
71    
72     <table>
73     <tr>
74     <th>Partition</th>
75     <th>Filesystem</th>
76     <th>Size</th>
77     <th>Description</th>
78     </tr>
79     <tr>
80     <ti><path>/dev/sda1</path></ti>
81     <ti>Partition map</ti>
82     <ti>31.5k</ti>
83     <ti>Partition map</ti>
84     </tr>
85     <tr>
86     <ti><path>/dev/sda2</path></ti>
87     <ti>(bootstrap)</ti>
88     <ti>800k</ti>
89     <ti>Apple_Bootstrap</ti>
90     </tr>
91     <tr>
92     <ti><path>/dev/sda3</path></ti>
93     <ti>(swap)</ti>
94     <ti>512M</ti>
95     <ti>Swap partition</ti>
96     </tr>
97     <tr>
98     <ti><path>/dev/sda4</path></ti>
99     <ti>ext3</ti>
100     <ti>Rest of the disk</ti>
101     <ti>Root partition</ti>
102     </tr>
103     </table>
104    
105     <note>
106     There are some partitions named like this: <path>Apple_Driver43,
107     Apple_Driver_ATA, Apple_FWDriver, Apple_Driver_IOKit,
108     Apple_Patches</path>. If you are not planning to use MacOS 9 you can
109     delete them, because MacOS X and Linux don't need them.
110 fox2mike 1.22 You might have to use parted in order to delete them, as mac-fdisk can't delete
111     them yet.
112 swift 1.1 </note>
113    
114     <p>
115     If you are interested in knowing how big a partition should be, or even how
116     many partitions you need, read on. Otherwise continue now with
117     <uri link="#mac-fdisk">Apple G5: Using mac-fdisk to Partition your
118     Disk</uri> or <uri link="#fdisk">IBM pSeries: using fdisk to Partition
119     your Disk</uri>
120     </p>
121    
122     </body>
123     </subsection>
124     <subsection>
125     <title>How Many and How Big?</title>
126     <body>
127    
128     <p>
129     The number of partitions is highly dependent on your environment. For instance,
130     if you have lots of users, you will most likely want to have your
131     <path>/home</path> separate as it increases security and makes backups easier.
132     If you are installing Gentoo to perform as a mailserver, your
133     <path>/var</path> should be separate as all mails are stored inside
134     <path>/var</path>. A good choice of filesystem will then maximise your
135     performance. Gameservers will have a separate <path>/opt</path> as most gaming
136     servers are installed there. The reason is similar for <path>/home</path>:
137 swift 1.19 security and backups. You will definitely want to keep <path>/usr</path> big:
138     not only will it contain the majority of applications, the Portage tree alone
139     takes around 500 Mbyte excluding the various sources that are stored in it.
140 swift 1.1 </p>
141    
142     <p>
143     As you can see, it very much depends on what you want to achieve. Separate
144     partitions or volumes have the following advantages:
145     </p>
146    
147     <ul>
148     <li>
149 neysx 1.3 You can choose the best performing filesystem for each partition or volume
150 swift 1.1 </li>
151     <li>
152     Your entire system cannot run out of free space if one defunct tool is
153     continuously writing files to a partition or volume
154     </li>
155     <li>
156     If necessary, file system checks are reduced in time, as multiple checks can
157     be done in parallel (although this advantage is more with multiple disks than
158     it is with multiple partitions)
159     </li>
160     <li>
161     Security can be enhanced by mounting some partitions or volumes read-only,
162     nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.
163     </li>
164     </ul>
165    
166     <p>
167     However, multiple partitions have one big disadvantage: if not configured
168     properly, you might result in having a system with lots
169 swift 1.4 of free space on one partition and none on another. There is also a 15-partition
170 swift 1.6 limit for SCSI and SATA.
171 swift 1.1 </p>
172    
173     </body>
174     </subsection>
175     </section>
176     <section id="mac-fdisk">
177     <title>Default: Using mac-fdisk (Apple G5) Partition your Disk</title>
178     <body>
179    
180     <p>
181     At this point, create your partitions using <c>mac-fdisk</c>:
182     </p>
183    
184     <pre caption="Starting mac-fdisk">
185 swift 1.2 # <i>mac-fdisk /dev/sda</i>
186 swift 1.1 </pre>
187    
188     <p>
189     First delete the partitions you have cleared previously to make room for your
190     Linux partitions. Use <c>d</c> in <c>mac-fdisk</c> to delete those partition(s).
191     It will ask for the partition number to delete.
192     </p>
193    
194     <p>
195     Second, create an <e>Apple_Bootstrap</e> partition by using <c>b</c>. It will
196     ask for what block you want to start. Enter the number of your first free
197 swift 1.14 partition, followed by a <c>p</c>. For instance this is <c>2p</c>.
198 swift 1.1 </p>
199    
200     <note>
201     This partition is <e>not</e> a "boot" partition. It is not used by Linux at all;
202     you don't have to place any filesystem on it and you should never mount it. PPC
203 neysx 1.12 users don't need an extra partition for <path>/boot</path>.
204 swift 1.1 </note>
205    
206     <p>
207     Now create a swap partition by pressing <c>c</c>. Again <c>mac-fdisk</c> will
208 swift 1.14 ask for what block you want to start this partition from. As we used <c>2</c>
209 swift 1.1 before to create the Apple_Bootstrap partition, you now have to enter
210 swift 1.14 <c>3p</c>. When you're asked for the size, enter <c>512M</c> (or whatever size
211     you want). When asked for a name, enter <c>swap</c> (mandatory).
212 swift 1.1 </p>
213    
214     <p>
215 swift 1.14 To create the root partition, enter <c>c</c>, followed by <c>4p</c> to select
216 swift 1.1 from what block the root partition should start. When asked for the size, enter
217 swift 1.14 <c>4p</c> again. <c>mac-fdisk</c> will interpret this as "Use all available
218 swift 1.1 space". When asked for the name, enter <c>root</c> (mandatory).
219     </p>
220    
221     <p>
222     To finish up, write the partition to the disk using <c>w</c> and <c>q</c> to
223     quit <c>mac-fdisk</c>.
224     </p>
225 fox2mike 1.22
226 sejo 1.7 <note>
227 fox2mike 1.22 To make sure everything is ok, you should run mac-fdisk once more and check
228     whether all the partitions are there.If you don't see any of the partitions you
229     created, or the changes you made, you should reinitialize your partitions by
230     pressing "i" in mac-fdisk. Note that this will recreate the partition map and
231     thus remove all your partitions.
232 sejo 1.7 </note>
233    
234 swift 1.1 <p>
235     Now that your partitions are created, you can now continue with <uri
236     link="#filesystems">Creating Filesystems</uri>.
237     </p>
238    
239     </body>
240     </section>
241     <section id="fdisk">
242 swift 1.18 <title>IBM pSeries, iSeries and OpenPower: using fdisk to Partition your Disk</title>
243 swift 1.1 <subsection>
244     <body>
245    
246 swift 1.18 <note>
247     If you are planning to use a RAID disk array for your gentoo installation and
248 fox2mike 1.24 you are using POWER5-based hardware, you should now run <c>iprconfig</c> to
249     format the disks to Advanced Function format and create the disk array. You
250     should emerge <c>iprutils</c> after your install is complete.
251 swift 1.18 </note>
252    
253 swift 1.1 <p>
254 fox2mike 1.24 If you have an ipr based SCSI adapter, you should start the ipr utilities now.
255     </p>
256    
257     <pre caption="Starting ipr utilities">
258     # <i>/etc/init.d/iprinit start</i>
259     </pre>
260    
261     <p>
262 swift 1.1 The following parts explain how to create the example partition layout
263     described previously, namely:
264     </p>
265    
266     <table>
267     <tr>
268     <th>Partition</th>
269     <th>Description</th>
270     </tr>
271     <tr>
272     <ti><path>/dev/sda1</path></ti>
273     <ti>PPC PReP Boot partition</ti>
274     </tr>
275     <tr>
276     <ti><path>/dev/sda2</path></ti>
277     <ti>Swap partition</ti>
278     </tr>
279     <tr>
280     <ti><path>/dev/sda3</path></ti>
281     <ti>Root partition</ti>
282     </tr>
283     </table>
284    
285     <p>
286 neysx 1.5 Change your partition layout according to your own preference.
287 swift 1.1 </p>
288    
289     </body>
290     </subsection>
291     <subsection>
292     <title>Viewing the Current Partition Layout</title>
293     <body>
294    
295     <p>
296     <c>fdisk</c> is a popular and powerful tool to split your disk into
297     partitions. Fire up <c>fdisk</c> on your disk (in our example, we
298     use <path>/dev/sda</path>):
299     </p>
300    
301     <pre caption="Starting fdisk">
302     # <i>fdisk /dev/sda</i>
303     </pre>
304    
305     <p>
306     Once in <c>fdisk</c>, you'll be greeted with a prompt that looks like
307     this:
308     </p>
309    
310     <pre caption="fdisk prompt">
311     Command (m for help):
312     </pre>
313    
314     <p>
315     Type <c>p</c> to display your disk's current partition configuration:
316     </p>
317    
318     <pre caption="An example partition configuration">
319     Command (m for help): p
320    
321     Disk /dev/sda: 30.7 GB, 30750031872 bytes
322     141 heads, 63 sectors/track, 6761 cylinders
323     Units = cylinders of 8883 * 512 = 4548096 bytes
324    
325     Device Boot Start End Blocks Id System
326 neysx 1.11 /dev/sda1 1 12 53266+ 83 Linux
327     /dev/sda2 13 233 981571+ 82 Linux swap
328     /dev/sda3 234 674 1958701+ 83 Linux
329     /dev/sda4 675 6761 27035410+ 5 Extended
330     /dev/sda5 675 2874 9771268+ 83 Linux
331     /dev/sda6 2875 2919 199836 83 Linux
332     /dev/sda7 2920 3008 395262 83 Linux
333     /dev/sda8 3009 6761 16668918 83 Linux
334 swift 1.1
335     Command (m for help):
336     </pre>
337    
338     <p>
339 neysx 1.11 This particular disk is configured to house six Linux filesystems
340 swift 1.1 (each with a corresponding partition listed as "Linux") as well as a
341     swap partition (listed as "Linux swap").
342     </p>
343    
344     </body>
345     </subsection>
346     <subsection>
347     <title>Removing all Partitions</title>
348     <body>
349    
350     <p>
351     We will first remove all existing partitions from the disk. Type
352     <c>d</c> to delete a partition. For instance, to delete an existing
353     <path>/dev/sda1</path>:
354     </p>
355    
356 neysx 1.11 <note>
357     If you don't want to delete all partitions just delete those you
358 swift 1.1 want to delete. At this point the author recommends a backup of your
359     data to avoid the lose of it.
360     </note>
361    
362     <pre caption="Deleting a partition">
363     Command (m for help): <i>d</i>
364     Partition number (1-4): <i>1</i>
365     </pre>
366    
367     <p>
368     The partition has been scheduled for deletion. It will no longer show up
369     if you type <c>p</c>, but it will not be erased until your changes have
370     been saved. If you made a mistake and want to abort without saving your
371     changes, type <c>q</c> immediately and hit enter and your partition will
372     not be deleted.
373     </p>
374    
375     <p>
376     Now, assuming that you do indeed want to wipe out all the partitions on
377     your system, repeatedly type <c>p</c> to print out a partition listing
378     and then type <c>d</c> and the number of the partition to delete it.
379     Eventually, you'll end up with a partition table with nothing in it:
380     </p>
381    
382     <pre caption="An empty partition table">
383     Disk /dev/sda: 30.7 GB, 30750031872 bytes
384     141 heads, 63 sectors/track, 6761 cylinders
385     Units = cylinders of 8883 * 512 = 4548096 bytes
386    
387     Device Boot Start End Blocks Id System
388    
389     Command (m for help):
390     </pre>
391    
392     <p>
393     Now that the in-memory partition table is empty, we're ready to create
394     the partitions. We will use a default partitioning scheme as discussed
395     previously. Of course, don't follow these instructions to the letter if
396     you don't want the same partitioning scheme!
397     </p>
398    
399     </body>
400     </subsection>
401     <subsection>
402     <title>Creating the PPC PReP boot partition</title>
403     <body>
404    
405     <p>
406     We first create a small PReP boot partition. Type <c>n</c> to create a new
407     partition, then <c>p</c> to select a primary partition, followed by
408     <c>1</c> to select the first primary partition. When prompted for the
409     first cylinder, hit enter. When prompted for the last cylinder, type
410     <c>+7M</c> to create a partition 7 Mbyte in size. After you've done
411     this, type <c>t</c> to set the partition type, <c>1</c> to select the
412     partition you just created and then type in <c>41</c> to set the
413 swift 1.18 partition type to "PPC PReP Boot". Finally, you'll need to mark the PReP
414     partition as bootable.
415 swift 1.1 </p>
416    
417     <note>
418     The PReP partition has to be smaller than 8 MByte!
419     </note>
420    
421 swift 1.18 <pre caption="Creating the PReP boot partition">
422 swift 1.1 Command (m for help): <i>p</i>
423    
424     Disk /dev/sda: 30.7 GB, 30750031872 bytes
425     141 heads, 63 sectors/track, 6761 cylinders
426     Units = cylinders of 8883 * 512 = 4548096 bytes
427    
428     Device Boot Start End Blocks Id System
429    
430     Command (m for help): <i>n</i>
431     Command action
432     e extended
433     p primary partition (1-4)
434     <i>p</i>
435     Partition number (1-4): <i>1</i>
436     First cylinder (1-6761, default 1):
437     Using default value 1
438     Last cylinder or +size or +sizeM or +sizeK (1-6761, default
439     6761): <i>+8M</i>
440    
441     Command (m for help): <i>t</i>
442     Selected partition 1
443     Hex code (type L to list codes): <i>41</i>
444     Changed system type of partition 1 to 41 (PPC PReP Boot)
445    
446 swift 1.18 Command (m for help): <i>a</i>
447     Partition number (1-4): <i>1</i>
448 swift 1.1 Command (m for help):
449     </pre>
450    
451     <p>
452 swift 1.18 Now, when you type <c>p</c>, you should see the following partition information:
453 swift 1.1 </p>
454    
455     <pre caption="Created boot partition">
456     Command (m for help): <i>p</i>
457    
458     Disk /dev/sda: 30.7 GB, 30750031872 bytes
459     141 heads, 63 sectors/track, 6761 cylinders
460     Units = cylinders of 8883 * 512 = 4548096 bytes
461    
462     Device Boot Start End Blocks Id System
463 swift 1.18 /dev/sda1 * 1 3 13293 41 PPC PReP Boot
464 swift 1.1
465     Command (m for help):
466     </pre>
467     </body>
468     </subsection>
469     <subsection>
470     <title>Creating the Swap Partition</title>
471     <body>
472    
473     <p>
474     Let's now create the swap partition. To do this, type <c>n</c> to create
475     a new partition, then <c>p</c> to tell fdisk that you want a primary
476     partition. Then type <c>2</c> to create the second primary partition,
477 swift 1.2 <path>/dev/sda2</path> in our case. When prompted for the first
478 swift 1.1 cylinder, hit enter. When prompted for the last cylinder, type
479     <c>+512M</c> to create a partition 512MB in size. After you've done
480     this, type <c>t</c> to set the partition type, <c>2</c> to select the
481     partition you just created and then type in <c>82</c> to set the
482     partition type to "Linux Swap". After completing these steps, typing
483     <c>p</c> should display a partition table that looks similar to this:
484     </p>
485    
486     <pre caption="Partition listing after creating a swap partition">
487     Command (m for help): <i>p</i>
488    
489     Disk /dev/sda: 30.7 GB, 30750031872 bytes
490     141 heads, 63 sectors/track, 6761 cylinders
491     Units = cylinders of 8883 * 512 = 4548096 bytes
492    
493     Device Boot Start End Blocks Id System
494 neysx 1.11 /dev/sda1 1 3 13293 41 PPC PReP Boot
495     /dev/sda2 4 117 506331 82 Linux swap
496 swift 1.1
497     Command (m for help):
498     </pre>
499    
500     </body>
501     </subsection>
502     <subsection>
503     <title>Creating the Root Partition</title>
504     <body>
505    
506     <p>
507     Finally, let's create the root partition. To do this, type <c>n</c> to
508     create a new partition, then <c>p</c> to tell fdisk that you want a
509     primary partition. Then type <c>3</c> to create the third primary
510     partition, <path>/dev/sda3</path> in our case. When prompted for the
511     first cylinder, hit enter. When prompted for the last cylinder, hit
512     enter to create a partition that takes up the rest of the remaining
513     space on your disk. After completing these steps, typing <c>p</c> should
514     display a partition table that looks similar to this:
515     </p>
516    
517     <pre caption="Partition listing after creating the root partition">
518     Command (m for help): p
519    
520     Disk /dev/sda: 30.7 GB, 30750031872 bytes
521     141 heads, 63 sectors/track, 6761 cylinders
522     Units = cylinders of 8883 * 512 = 4548096 bytes
523    
524     Device Boot Start End Blocks Id System
525 neysx 1.11 /dev/sda1 1 3 13293 41 PPC PReP Boot
526     /dev/sda2 4 117 506331 82 Linux swap
527     /dev/sda3 118 6761 29509326 83 Linux
528 swift 1.1
529     Command (m for help):
530     </pre>
531     </body>
532     </subsection>
533     <subsection>
534     <title>Saving the Partition Layout</title>
535     <body>
536    
537     <p>
538     To save the partition layout and exit <c>fdisk</c>, type <c>w</c>.
539     </p>
540    
541     <pre caption="Save and exit fdisk">
542     Command (m for help): <i>w</i>
543     </pre>
544    
545     <p>
546     Now that your partitions are created, you can now continue with <uri
547     link="#filesystems">Creating Filesystems</uri>.
548     </p>
549    
550     </body>
551     </subsection>
552 neysx 1.11 </section>
553     <section id="filesystems">
554     <title>Creating Filesystems</title>
555     <subsection>
556     <title>Introduction</title>
557     <body>
558    
559     <p>
560     Now that your partitions are created, it is time to place a filesystem on them.
561     If you don't care about what filesystem to choose and are happy with what we use
562     as default in this handbook, continue with <uri
563     link="#filesystems-apply">Applying a Filesystem to a Partition</uri>.
564     Otherwise read on to learn about the available filesystems...
565     </p>
566    
567     </body>
568     </subsection>
569 swift 1.1 <subsection>
570     <title>Filesystems?</title>
571     <body>
572    
573     <note>
574 fox2mike 1.24 Several filesystems are available. ext2, ext3 and ReiserFS support is built in
575     the Installation CD kernels. JFS and XFS support is available through kernel
576     modules.
577 swift 1.1 </note>
578    
579     <p>
580     <b>ext2</b> is the tried and true Linux filesystem but doesn't have metadata
581     journaling, which means that routine ext2 filesystem checks at startup time can
582     be quite time-consuming. There is now quite a selection of newer-generation
583     journaled filesystems that can be checked for consistency very quickly and are
584     thus generally preferred over their non-journaled counterparts. Journaled
585     filesystems prevent long delays when you boot your system and your filesystem
586     happens to be in an inconsistent state.
587     </p>
588    
589     <p>
590     <b>ext3</b> is the journaled version of the ext2 filesystem, providing metadata
591     journaling for fast recovery in addition to other enhanced journaling modes like
592     full data and ordered data journaling. ext3 is a very good and reliable
593     filesystem. It has an additional hashed b-tree indexing option that enables
594 swift 1.20 high performance in almost all situations. You can enable this indexing by
595     adding <c>-O dir_index</c> to the <c>mke2fs</c> command. In short, ext3 is an
596     excellent filesystem.
597 swift 1.1 </p>
598    
599     <p>
600     <b>ReiserFS</b> is a B*-tree based filesystem that has very good overall
601     performance and greatly outperforms both ext2 and ext3 when dealing with small
602     files (files less than 4k), often by a factor of 10x-15x. ReiserFS also scales
603     extremely well and has metadata journaling. As of kernel 2.4.18+, ReiserFS is
604     solid and usable as both general-purpose filesystem and for extreme cases such
605     as the creation of large filesystems, the use of many small files, very large
606     files and directories containing tens of thousands of files.
607     </p>
608    
609     <p>
610     <b>XFS</b> is a filesystem with metadata journaling that is fully supported
611     under Gentoo Linux's xfs-sources kernel. It comes with a robust feature-set and
612     is optimized for scalability. We only recommend using this filesystem on Linux
613     systems with high-end SCSI and/or fibre channel storage and a uninterruptible
614     power supply. Because XFS aggressively caches in-transit data in RAM, improperly
615     designed programs (those that don't take proper precautions when writing files
616     to disk and there are quite a few of them) can lose a good deal of data if the
617     system goes down unexpectedly.
618     </p>
619    
620     <p>
621     <b>JFS</b> is IBM's high-performance journaling filesystem. It has recently
622     become production-ready and there hasn't been a sufficient track record to
623     comment positively nor negatively on its general stability at this point.
624     </p>
625    
626     </body>
627     </subsection>
628     <subsection id="filesystems-apply">
629     <title>Applying a Filesystem to a Partition</title>
630     <body>
631    
632     <p>
633     To create a filesystem on a partition or volume, there are tools available for
634     each possible filesystem:
635     </p>
636    
637     <table>
638     <tr>
639     <th>Filesystem</th>
640     <th>Creation Command</th>
641     </tr>
642     <tr>
643     <ti>ext2</ti>
644     <ti><c>mke2fs</c></ti>
645     </tr>
646     <tr>
647     <ti>ext3</ti>
648     <ti><c>mke2fs -j</c></ti>
649     </tr>
650     <tr>
651     <ti>reiserfs</ti>
652     <ti><c>mkreiserfs</c></ti>
653     </tr>
654     <tr>
655     <ti>xfs</ti>
656     <ti><c>mkfs.xfs</c></ti>
657     </tr>
658     <tr>
659     <ti>jfs</ti>
660     <ti><c>mkfs.jfs</c></ti>
661     </tr>
662     </table>
663    
664     <p>
665     For instance, to have the root partition (<path>/dev/sda4</path> in our example)
666     in ext3 (as in our example), you would use:
667     </p>
668    
669     <pre caption="Applying a filesystem on a partition">
670     # <i>mke2fs -j /dev/sda4</i>
671     </pre>
672    
673     <p>
674     Now create the filesystems on your newly created partitions (or logical
675     volumes).
676     </p>
677    
678     </body>
679     </subsection>
680     <subsection>
681     <title>Activating the Swap Partition</title>
682     <body>
683    
684     <p>
685     <c>mkswap</c> is the command that is used to initialize swap partitions:
686     </p>
687    
688     <pre caption="Creating a Swap signature">
689     # <i>mkswap /dev/sda3</i>
690     </pre>
691    
692     <p>
693     To activate the swap partition, use <c>swapon</c>:
694     </p>
695    
696     <pre caption="Activating the swap partition">
697     # <i>swapon /dev/sda3</i>
698     </pre>
699    
700     <p>
701 swift 1.15 Create and activate the swap with the commands mentioned above.
702 swift 1.1 </p>
703    
704     </body>
705     </subsection>
706     </section>
707     <section>
708     <title>Mounting</title>
709     <body>
710    
711     <p>
712     Now that your partitions are initialized and are housing a filesystem, it is
713     time to mount those partitions. Use the <c>mount</c> command. Don't forget to
714     create the necessary mount directories for every partition you created. As an
715     example we create a mount-point and mount the root and boot partition:
716     </p>
717    
718     <pre caption="Mounting partitions">
719     # <i>mkdir /mnt/gentoo</i>
720     # <i>mount /dev/sda4 /mnt/gentoo</i>
721     </pre>
722    
723     <note>
724     If you want your <path>/tmp</path> to reside on a separate partition, be sure to
725     change its permissions after mounting: <c>chmod 1777 /mnt/gentoo/tmp</c>. This
726     also holds for <path>/var/tmp</path>.
727     </note>
728    
729     <p>
730     Continue with <uri link="?part=1&amp;chap=5">Installing the Gentoo
731     Installation Files</uri>.
732     </p>
733    
734     </body>
735     </section>
736     </sections>

  ViewVC Help
Powered by ViewVC 1.1.20