/[gentoo]/xml/htdocs/doc/en/handbook/hb-install-x86+amd64-kernel.xml
Gentoo

Contents of /xml/htdocs/doc/en/handbook/hb-install-x86+amd64-kernel.xml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.45 - (show annotations) (download) (as text)
Wed Feb 22 21:27:45 2012 UTC (2 years, 5 months ago) by swift
Branch: MAIN
Changes since 1.44: +7 -5 lines
File MIME type: application/xml
Fix bug #405271 (thanks to Ogelpre) to update /etc/timezone wherever we say to update /etc/localtime as it is /etc/timezone that is the master, read by timezone-data to update localtime

1 <?xml version='1.0' encoding='UTF-8'?>
2 <!DOCTYPE sections SYSTEM "/dtd/book.dtd">
3
4 <!-- The content of this document is licensed under the CC-BY-SA license -->
5 <!-- See http://creativecommons.org/licenses/by-sa/2.5 -->
6
7 <!-- $Header: /var/cvsroot/gentoo/xml/htdocs/doc/en/handbook/hb-install-x86+amd64-kernel.xml,v 1.44 2011/11/05 18:30:35 swift Exp $ -->
8
9 <sections>
10
11 <abstract>
12 The Linux kernel is the core of every distribution. This chapter
13 explains how to configure your kernel.
14 </abstract>
15
16 <version>15</version>
17 <date>2012-02-22</date>
18
19 <section>
20 <title>Timezone</title>
21 <body>
22
23 <p>
24 You first need to select your timezone so that your system knows where it is
25 located. Look for your timezone in <path>/usr/share/zoneinfo</path>, then copy
26 it to <path>/etc/localtime</path>. Please avoid the
27 <path>/usr/share/zoneinfo/Etc/GMT*</path> timezones as their names do not
28 indicate the expected zones. For instance, <path>GMT-8</path> is in fact
29 GMT+8.
30 </p>
31
32 <pre caption="Setting the timezone information">
33 # <i>ls /usr/share/zoneinfo</i>
34 <comment>(Suppose you want to use Europe/Brussels)</comment>
35 # <i>cp /usr/share/zoneinfo/Europe/Brussels /etc/localtime</i>
36 <comment>(Next set the timezone)</comment>
37 # <i>echo "Europe/Brussels" &gt; /etc/timezone</i>
38 </pre>
39
40 </body>
41 </section>
42 <section>
43 <title>Installing the Sources</title>
44 <subsection>
45 <title>Choosing a Kernel</title>
46 <body>
47
48 <p>
49 The core around which all distributions are built is the Linux kernel. It is the
50 layer between the user programs and your system hardware. Gentoo provides its
51 users several possible kernel sources. A full listing with description is
52 available at the <uri link="/doc/en/gentoo-kernel.xml">Gentoo Kernel
53 Guide</uri>.
54 </p>
55
56 <p>
57 For <keyval id="arch"/>-based systems we have <c>gentoo-sources</c>
58 (kernel source patched for extra features).
59 </p>
60
61 <p>
62 Choose your kernel source and install it using <c>emerge</c>.
63 </p>
64
65 <pre caption="Installing a kernel source">
66 # <i>emerge gentoo-sources</i>
67 </pre>
68
69 <p>
70 When you take a look in <path>/usr/src</path> you should see a symlink called
71 <path>linux</path> pointing to your kernel source. In this case, the installed
72 kernel source points to <c>gentoo-sources-<keyval id="kernel-version"/></c>.
73 Your version may be different, so keep this in mind.
74 </p>
75
76 <pre caption="Viewing the kernel source symlink">
77 # <i>ls -l /usr/src/linux</i>
78 lrwxrwxrwx 1 root root 12 Oct 13 11:04 /usr/src/linux -&gt; linux-<keyval id="kernel-version"/>
79 </pre>
80
81 <p>
82 Now it is time to configure and compile your kernel source. You can use
83 <c>genkernel</c> for this, which will build a generic kernel as used by the
84 Installation CD. We explain the "manual" configuration first though, as it is
85 the best way to optimize your environment.
86 </p>
87
88 <p>
89 If you want to manually configure your kernel, continue now with <uri
90 link="#manual">Default: Manual Configuration</uri>. If you want to use
91 <c>genkernel</c> you should read <uri link="#genkernel">Alternative: Using
92 genkernel</uri> instead.
93 </p>
94
95 </body>
96 </subsection>
97 </section>
98 <section id="manual">
99 <title>Default: Manual Configuration</title>
100 <subsection>
101 <title>Introduction</title>
102 <body>
103
104 <p>
105 Manually configuring a kernel is often seen as the most difficult procedure a
106 Linux user ever has to perform. Nothing is less true -- after configuring a
107 couple of kernels you don't even remember that it was difficult ;)
108 </p>
109
110 <p>
111 However, one thing <e>is</e> true: you must know your system when you start
112 configuring a kernel manually. Most information can be gathered by emerging
113 pciutils (<c>emerge pciutils</c>) which contains <c>lspci</c>. You will now
114 be able to use <c>lspci</c> within the chrooted environment. You may safely
115 ignore any <e>pcilib</e> warnings (like pcilib: cannot open
116 /sys/bus/pci/devices) that <c>lspci</c> throws out. Alternatively, you can run
117 <c>lspci</c> from a <e>non-chrooted</e> environment. The results are the same.
118 You can also run <c>lsmod</c> to see what kernel modules the Installation CD
119 uses (it might provide you with a nice hint on what to enable).
120 </p>
121
122 <p>
123 Now go to your kernel source directory and execute <c>make menuconfig</c>. This
124 will fire up an ncurses-based configuration menu.
125 </p>
126
127 <pre caption="Invoking menuconfig">
128 # <i>cd /usr/src/linux</i>
129 # <i>make menuconfig</i>
130 </pre>
131
132 <p>
133 You will be greeted with several configuration sections. We'll first list some
134 options you must activate (otherwise Gentoo will not function, or not function
135 properly without additional tweaks).
136 </p>
137
138 </body>
139 </subsection>
140 <subsection>
141 <title>Activating Required Options</title>
142 <body>
143
144 <p>
145 Make sure that every driver that is vital to the booting of your system (such as
146 SCSI controller, ...) is compiled <e>in</e> the kernel and not as a module,
147 otherwise your system will not be able to boot completely.
148 </p>
149
150 </body>
151 <body test="func:keyval('arch')='AMD64'">
152
153 <p>
154 We shall then select the exact processor type. The x86_64 kernel maintainer
155 strongly recommends users enable MCE features so that they are able to be
156 notified of any hardware problems. On x86_64, these errors are not printed to
157 <c>dmesg</c> like on other architectures, but to <path>/dev/mcelog</path>. This
158 requires the <c>app-admin/mcelog</c> package. Make sure you select IA32
159 Emulation if you want to be able to run 32-bit programs. Gentoo will install a
160 multilib system (mixed 32-bit/64-bit computing) by default, so this option is
161 required.
162 </p>
163
164 <note>
165 If you plan to use a non-multilib profile (for a pure 64-bit system), then you
166 don't have to select IA32 Emulation support. However, you'll also need to follow
167 the <uri link="?part=1&amp;chap=6#doc_chap2_sect2">instructions</uri> for
168 switching to a <uri link="/doc/en/gentoo-amd64-faq.xml">non-multilib
169 profile</uri>, as well as choosing the correct <uri
170 link="?part=1&amp;chap=10#doc_chap2_sect2">bootloader</uri>.
171 </note>
172
173 <pre caption="Selecting processor type and features">
174 Processor type and features --->
175 [ ] Machine Check / overheating reporting
176 [ ] Intel MCE Features
177 [ ] AMD MCE Features
178 Processor family (AMD-Opteron/Athlon64) --->
179 ( ) Opteron/Athlon64/Hammer/K8
180 ( ) Intel P4 / older Netburst based Xeon
181 ( ) Core 2/newer Xeon
182 ( ) Intel Atom
183 ( ) Generic-x86-64
184 Executable file formats / Emulations --->
185 [*] IA32 Emulation
186 </pre>
187
188 </body>
189 <body test="func:keyval('arch')='x86'">
190
191 <p>
192 Now select the correct processor family:
193 </p>
194
195 <pre caption="Selecting correct processor family">
196 Processor type and features ---&gt;
197 <comment>(Change according to your system)</comment>
198 (<i>Athlon/Duron/K7</i>) Processor family
199 </pre>
200
201 </body>
202 <body>
203
204 <p>
205 Now go to <c>File Systems</c> and select support for the filesystems you use.
206 <e>Don't</e> compile them as modules, otherwise your Gentoo system will not be
207 able to mount your partitions. Also select <c>Virtual memory</c> and <c>/proc
208 file system</c>.
209 </p>
210
211 <pre caption="Selecting necessary file systems">
212 File systems ---&gt;
213 <comment>(Select one or more of the following options as needed by your system)</comment>
214 &lt;*&gt; Second extended fs support
215 &lt;*&gt; Ext3 journalling file system support
216 &lt;*&gt; The Extended 4 (ext4) filesystem
217 &lt;*&gt; Reiserfs support
218 &lt;*&gt; JFS filesystem support
219 &lt;*&gt; XFS filesystem support
220 ...
221 Pseudo Filesystems ---&gt;
222 [*] /proc file system support
223 [*] Virtual memory file system support (former shm fs)
224
225 <comment>(Enable GPT partition label support if you used that previously)</comment>
226 Partition Types ---&gt;
227 [*] Advanced partition selection
228 ...
229 [*] EFI GUID Partition support
230 </pre>
231
232 <p>
233 If you are using PPPoE to connect to the Internet or you are using a dial-up
234 modem, you will need the following options in the kernel:
235 </p>
236
237 <pre caption="Selecting PPPoE necessary drivers">
238 Device Drivers ---&gt;
239 Networking device Support ---&gt;
240 &lt;*&gt; PPP (point-to-point protocol) support
241 &lt;*&gt; PPP support for async serial ports
242 &lt;*&gt; PPP support for sync tty ports
243 </pre>
244
245 <p>
246 The two compression options won't harm but are not definitely needed, neither
247 does the <c>PPP over Ethernet</c> option, that might only be used by <c>ppp</c>
248 when configured to do kernel mode PPPoE.
249 </p>
250
251 <p>
252 If you require it, don't forget to include support in the kernel for your
253 ethernet card.
254 </p>
255
256 <p test="func:keyval('arch')='x86'">
257 If you have an Intel CPU that supports HyperThreading (tm), or you have a
258 multi-CPU system, you should activate "Symmetric multi-processing support":
259 </p>
260
261 <p test="func:keyval('arch')='AMD64'">
262 If you have a multi-CPU Opteron or a multi-core (e.g. AMD64 X2) system, you
263 should activate "Symmetric multi-processing support":
264 </p>
265
266 <pre caption="Activating SMP support">
267 Processor type and features ---&gt;
268 [*] Symmetric multi-processing support
269 </pre>
270
271 <note>
272 In multi-core systems, each core counts as one processor.
273 </note>
274
275 <p test="func:keyval('arch')='x86'">
276 If you have more than 4GB of RAM, you need to enable "High Memory Support
277 (64G)".
278 </p>
279
280 <p>
281 If you use USB Input Devices (like Keyboard or Mouse) don't forget to enable
282 those as well:
283 </p>
284
285 <pre caption="Activating USB Support for Input Devices">
286 Device Drivers ---&gt;
287 [*] HID Devices ---&gt;
288 &lt;*&gt; USB Human Interface Device (full HID) support
289 </pre>
290
291 </body>
292 <body test="func:keyval('arch')='x86'">
293
294 <p>
295 If you want PCMCIA support for your laptop, don't forget to enable
296 support for the PCMCIA card bridge present in your system:
297 </p>
298
299 <pre caption="Enabling PCMCIA support">
300 Bus options (PCI etc.) ---&gt;
301 PCCARD (PCMCIA/CardBus) support ---&gt;
302 &lt;*&gt; PCCard (PCMCIA/CardBus) support
303 <comment>(select 16 bit if you need support for older PCMCIA cards. Most people want this.)</comment>
304 &lt;*&gt; 16-bit PCMCIA support
305 [*] 32-bit CardBus support
306 <comment>(select the relevant bridges below)</comment>
307 *** PC-card bridges ***
308 &lt;*&gt; CardBus yenta-compatible bridge support (NEW)
309 &lt;*&gt; Cirrus PD6729 compatible bridge support (NEW)
310 &lt;*&gt; i82092 compatible bridge support (NEW)
311 </pre>
312
313 <p>
314 When you've finished configuring the kernel, continue with <uri
315 link="#compiling">Compiling and Installing</uri>.
316 </p>
317
318 </body>
319 </subsection>
320 <subsection id="compiling">
321 <title>Compiling and Installing</title>
322 <body>
323
324 <p>
325 Now that your kernel is configured, it is time to compile and install it. Exit
326 the configuration and start the compilation process:
327 </p>
328
329 <pre caption="Compiling the kernel">
330 # <i>make &amp;&amp; make modules_install</i>
331 </pre>
332
333 <p>
334 When the kernel has finished compiling, copy the kernel image to
335 <path>/boot</path>. Use whatever name you feel is appropriate for your kernel
336 choice and remember it as you will need it later on when you configure your
337 bootloader. Remember to replace <c><keyval id="kernel-name"/></c> with the
338 name and version of your kernel.
339 </p>
340
341 <pre caption="Installing the kernel">
342 # <i>cp arch/<keyval id="arch-sub"/>/boot/bzImage /boot/<keyval id="kernel-name"/></i>
343 </pre>
344
345 <p>
346 Now continue with <uri link="#kernel_modules">Kernel Modules</uri>.
347 </p>
348
349 </body>
350 </subsection>
351 </section>
352 <section id="genkernel">
353 <title>Alternative: Using genkernel</title>
354 <body>
355
356 <p>
357 If you are reading this section, you have chosen to use our <c>genkernel</c>
358 script to configure your kernel for you.
359 </p>
360
361 <p>
362 Now that your kernel source tree is installed, it's now time to compile your
363 kernel by using our <c>genkernel</c> script to automatically build a kernel for
364 you. <c>genkernel</c> works by configuring a kernel nearly identically to the
365 way our Installation CD kernel is configured. This means that when you use
366 <c>genkernel</c> to build your kernel, your system will generally detect all
367 your hardware at boot-time, just like our Installation CD does. Because
368 genkernel doesn't require any manual kernel configuration, it is an ideal
369 solution for those users who may not be comfortable compiling their own kernels.
370 </p>
371
372 <p>
373 Now, let's see how to use genkernel. First, emerge the genkernel ebuild:
374 </p>
375
376 <pre caption="Emerging genkernel">
377 # <i>emerge genkernel</i>
378 </pre>
379
380 <p>
381 Now, compile your kernel sources by running <c>genkernel all</c>. Be aware
382 though, as <c>genkernel</c> compiles a kernel that supports almost all
383 hardware, this compilation will take quite a while to finish!
384 </p>
385
386 <p>
387 Note that, if your boot partition doesn't use ext2 or ext3 as filesystem you
388 might need to manually configure your kernel using <c>genkernel --menuconfig
389 all</c> and add support for your filesystem <e>in</e> the kernel (i.e.
390 <e>not</e> as a module). Users of LVM2 will probably want to add <c>--lvm2</c>
391 as an argument as well.
392 </p>
393
394 <pre caption="Running genkernel">
395 # <i>genkernel all</i>
396 </pre>
397
398 <p>
399 Once <c>genkernel</c> completes, a kernel, full set of modules and
400 <e>initial ram disk</e> (initramfs) will be created. We will use the kernel
401 and initrd when configuring a boot loader later in this document. Write
402 down the names of the kernel and initrd as you will need it when writing
403 the bootloader configuration file. The initrd will be started immediately after
404 booting to perform hardware autodetection (just like on the Installation CD)
405 before your "real" system starts up.
406 </p>
407
408 <pre caption="Checking the created kernel image name and initrd">
409 # <i>ls /boot/kernel* /boot/initramfs*</i>
410 </pre>
411
412 </body>
413 </section>
414 <section id="kernel_modules">
415 <title>Kernel Modules</title>
416
417 <subsection>
418 <include href="hb-install-kernelmodules.xml"/>
419 </subsection>
420
421 </section>
422 </sections>

  ViewVC Help
Powered by ViewVC 1.1.20