/[gentoo-x86]/eclass/toolchain-funcs.eclass
Gentoo

Diff of /eclass/toolchain-funcs.eclass

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

Revision 1.1 Revision 1.131
1# Copyright 1999-2004 Gentoo Foundation 1# Copyright 1999-2014 Gentoo Foundation
2# Distributed under the terms of the GNU General Public License v2 2# Distributed under the terms of the GNU General Public License v2
3# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.1 2004/10/13 14:14:07 vapier Exp $ 3# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.131 2014/11/01 05:19:20 vapier Exp $
4
5# @ECLASS: toolchain-funcs.eclass
6# @MAINTAINER:
7# Toolchain Ninjas <toolchain@gentoo.org>
8# @BLURB: functions to query common info about the toolchain
9# @DESCRIPTION:
10# The toolchain-funcs aims to provide a complete suite of functions
11# for gleaning useful information about the toolchain and to simplify
12# ugly things like cross-compiling and multilib. All of this is done
13# in such a way that you can rely on the function always returning
14# something sane.
15
16if [[ -z ${_TOOLCHAIN_FUNCS_ECLASS} ]]; then
17_TOOLCHAIN_FUNCS_ECLASS=1
18
19inherit multilib
20
21# tc-getPROG <VAR [search vars]> <default> [tuple]
22_tc-getPROG() {
23 local tuple=$1
24 local v var vars=$2
25 local prog=$3
26
27 var=${vars%% *}
28 for v in ${vars} ; do
29 if [[ -n ${!v} ]] ; then
30 export ${var}="${!v}"
31 echo "${!v}"
32 return 0
33 fi
34 done
35
36 local search=
37 [[ -n $4 ]] && search=$(type -p "$4-${prog}")
38 [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p "${!tuple}-${prog}")
39 [[ -n ${search} ]] && prog=${search##*/}
40
41 export ${var}=${prog}
42 echo "${!var}"
43}
44tc-getBUILD_PROG() { _tc-getPROG CBUILD "BUILD_$1 $1_FOR_BUILD HOST$1" "${@:2}"; }
45tc-getPROG() { _tc-getPROG CHOST "$@"; }
46
47# @FUNCTION: tc-getAR
48# @USAGE: [toolchain prefix]
49# @RETURN: name of the archiver
50tc-getAR() { tc-getPROG AR ar "$@"; }
51# @FUNCTION: tc-getAS
52# @USAGE: [toolchain prefix]
53# @RETURN: name of the assembler
54tc-getAS() { tc-getPROG AS as "$@"; }
55# @FUNCTION: tc-getCC
56# @USAGE: [toolchain prefix]
57# @RETURN: name of the C compiler
58tc-getCC() { tc-getPROG CC gcc "$@"; }
59# @FUNCTION: tc-getCPP
60# @USAGE: [toolchain prefix]
61# @RETURN: name of the C preprocessor
62tc-getCPP() { tc-getPROG CPP cpp "$@"; }
63# @FUNCTION: tc-getCXX
64# @USAGE: [toolchain prefix]
65# @RETURN: name of the C++ compiler
66tc-getCXX() { tc-getPROG CXX g++ "$@"; }
67# @FUNCTION: tc-getLD
68# @USAGE: [toolchain prefix]
69# @RETURN: name of the linker
70tc-getLD() { tc-getPROG LD ld "$@"; }
71# @FUNCTION: tc-getSTRIP
72# @USAGE: [toolchain prefix]
73# @RETURN: name of the strip program
74tc-getSTRIP() { tc-getPROG STRIP strip "$@"; }
75# @FUNCTION: tc-getNM
76# @USAGE: [toolchain prefix]
77# @RETURN: name of the symbol/object thingy
78tc-getNM() { tc-getPROG NM nm "$@"; }
79# @FUNCTION: tc-getRANLIB
80# @USAGE: [toolchain prefix]
81# @RETURN: name of the archiver indexer
82tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; }
83# @FUNCTION: tc-getOBJCOPY
84# @USAGE: [toolchain prefix]
85# @RETURN: name of the object copier
86tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; }
87# @FUNCTION: tc-getF77
88# @USAGE: [toolchain prefix]
89# @RETURN: name of the Fortran 77 compiler
90tc-getF77() { tc-getPROG F77 gfortran "$@"; }
91# @FUNCTION: tc-getFC
92# @USAGE: [toolchain prefix]
93# @RETURN: name of the Fortran 90 compiler
94tc-getFC() { tc-getPROG FC gfortran "$@"; }
95# @FUNCTION: tc-getGCJ
96# @USAGE: [toolchain prefix]
97# @RETURN: name of the java compiler
98tc-getGCJ() { tc-getPROG GCJ gcj "$@"; }
99# @FUNCTION: tc-getPKG_CONFIG
100# @USAGE: [toolchain prefix]
101# @RETURN: name of the pkg-config tool
102tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; }
103# @FUNCTION: tc-getRC
104# @USAGE: [toolchain prefix]
105# @RETURN: name of the Windows resource compiler
106tc-getRC() { tc-getPROG RC windres "$@"; }
107# @FUNCTION: tc-getDLLWRAP
108# @USAGE: [toolchain prefix]
109# @RETURN: name of the Windows dllwrap utility
110tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; }
111
112# @FUNCTION: tc-getBUILD_AR
113# @USAGE: [toolchain prefix]
114# @RETURN: name of the archiver for building binaries to run on the build machine
115tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; }
116# @FUNCTION: tc-getBUILD_AS
117# @USAGE: [toolchain prefix]
118# @RETURN: name of the assembler for building binaries to run on the build machine
119tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; }
120# @FUNCTION: tc-getBUILD_CC
121# @USAGE: [toolchain prefix]
122# @RETURN: name of the C compiler for building binaries to run on the build machine
123tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; }
124# @FUNCTION: tc-getBUILD_CPP
125# @USAGE: [toolchain prefix]
126# @RETURN: name of the C preprocessor for building binaries to run on the build machine
127tc-getBUILD_CPP() { tc-getBUILD_PROG CPP cpp "$@"; }
128# @FUNCTION: tc-getBUILD_CXX
129# @USAGE: [toolchain prefix]
130# @RETURN: name of the C++ compiler for building binaries to run on the build machine
131tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; }
132# @FUNCTION: tc-getBUILD_LD
133# @USAGE: [toolchain prefix]
134# @RETURN: name of the linker for building binaries to run on the build machine
135tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; }
136# @FUNCTION: tc-getBUILD_STRIP
137# @USAGE: [toolchain prefix]
138# @RETURN: name of the strip program for building binaries to run on the build machine
139tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; }
140# @FUNCTION: tc-getBUILD_NM
141# @USAGE: [toolchain prefix]
142# @RETURN: name of the symbol/object thingy for building binaries to run on the build machine
143tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; }
144# @FUNCTION: tc-getBUILD_RANLIB
145# @USAGE: [toolchain prefix]
146# @RETURN: name of the archiver indexer for building binaries to run on the build machine
147tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; }
148# @FUNCTION: tc-getBUILD_OBJCOPY
149# @USAGE: [toolchain prefix]
150# @RETURN: name of the object copier for building binaries to run on the build machine
151tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; }
152# @FUNCTION: tc-getBUILD_PKG_CONFIG
153# @USAGE: [toolchain prefix]
154# @RETURN: name of the pkg-config tool for building binaries to run on the build machine
155tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; }
156
157# @FUNCTION: tc-export
158# @USAGE: <list of toolchain variables>
159# @DESCRIPTION:
160# Quick way to export a bunch of compiler vars at once.
161tc-export() {
162 local var
163 for var in "$@" ; do
164 [[ $(type -t tc-get${var}) != "function" ]] && die "tc-export: invalid export variable '${var}'"
165 eval tc-get${var} > /dev/null
166 done
167}
168
169# @FUNCTION: tc-is-cross-compiler
170# @RETURN: Shell true if we are using a cross-compiler, shell false otherwise
171tc-is-cross-compiler() {
172 [[ ${CBUILD:-${CHOST}} != ${CHOST} ]]
173}
174
175# @FUNCTION: tc-is-softfloat
176# @DESCRIPTION:
177# See if this toolchain is a softfloat based one.
178# @CODE
179# The possible return values:
180# - only: the target is always softfloat (never had fpu)
181# - yes: the target should support softfloat
182# - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention
183# - no: the target doesn't support softfloat
184# @CODE
185# This allows us to react differently where packages accept
186# softfloat flags in the case where support is optional, but
187# rejects softfloat flags where the target always lacks an fpu.
188tc-is-softfloat() {
189 local CTARGET=${CTARGET:-${CHOST}}
190 case ${CTARGET} in
191 bfin*|h8300*)
192 echo "only" ;;
193 *)
194 if [[ ${CTARGET//_/-} == *-softfloat-* ]] ; then
195 echo "yes"
196 elif [[ ${CTARGET//_/-} == *-softfp-* ]] ; then
197 echo "softfp"
198 else
199 echo "no"
200 fi
201 ;;
202 esac
203}
204
205# @FUNCTION: tc-is-static-only
206# @DESCRIPTION:
207# Return shell true if the target does not support shared libs, shell false
208# otherwise.
209tc-is-static-only() {
210 local host=${CTARGET:-${CHOST}}
211
212 # *MiNT doesn't have shared libraries, only platform so far
213 [[ ${host} == *-mint* ]]
214}
215
216# @FUNCTION: tc-export_build_env
217# @USAGE: [compiler variables]
218# @DESCRIPTION:
219# Export common build related compiler settings.
220tc-export_build_env() {
221 tc-export "$@"
222 : ${BUILD_CFLAGS:=-O1 -pipe}
223 : ${BUILD_CXXFLAGS:=-O1 -pipe}
224 : ${BUILD_CPPFLAGS:=}
225 : ${BUILD_LDFLAGS:=}
226 export BUILD_{C,CXX,CPP,LD}FLAGS
227
228 # Some packages use XXX_FOR_BUILD.
229 local v
230 for v in BUILD_{C,CXX,CPP,LD}FLAGS ; do
231 export ${v#BUILD_}_FOR_BUILD="${!v}"
232 done
233}
234
235# @FUNCTION: tc-env_build
236# @USAGE: <command> [command args]
237# @INTERNAL
238# @DESCRIPTION:
239# Setup the compile environment to the build tools and then execute the
240# specified command. We use tc-getBUILD_XX here so that we work with
241# all of the semi-[non-]standard env vars like $BUILD_CC which often
242# the target build system does not check.
243tc-env_build() {
244 tc-export_build_env
245 CFLAGS=${BUILD_CFLAGS} \
246 CXXFLAGS=${BUILD_CXXFLAGS} \
247 CPPFLAGS=${BUILD_CPPFLAGS} \
248 LDFLAGS=${BUILD_LDFLAGS} \
249 AR=$(tc-getBUILD_AR) \
250 AS=$(tc-getBUILD_AS) \
251 CC=$(tc-getBUILD_CC) \
252 CPP=$(tc-getBUILD_CPP) \
253 CXX=$(tc-getBUILD_CXX) \
254 LD=$(tc-getBUILD_LD) \
255 NM=$(tc-getBUILD_NM) \
256 PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \
257 RANLIB=$(tc-getBUILD_RANLIB) \
258 "$@"
259}
260
261# @FUNCTION: econf_build
262# @USAGE: [econf flags]
263# @DESCRIPTION:
264# Sometimes we need to locally build up some tools to run on CBUILD because
265# the package has helper utils which are compiled+executed when compiling.
266# This won't work when cross-compiling as the CHOST is set to a target which
267# we cannot natively execute.
4# 268#
5# Author: Toolchain Ninjas <ninjas@gentoo.org> 269# For example, the python package will build up a local python binary using
270# a portable build system (configure+make), but then use that binary to run
271# local python scripts to build up other components of the overall python.
272# We cannot rely on the python binary in $PATH as that often times will be
273# a different version, or not even installed in the first place. Instead,
274# we compile the code in a different directory to run on CBUILD, and then
275# use that binary when compiling the main package to run on CHOST.
6# 276#
7# This eclass contains (or should) functions to get common info 277# For example, with newer EAPIs, you'd do something like:
8# about the toolchain (libc/compiler/binutils/etc...) 278# @CODE
279# src_configure() {
280# ECONF_SOURCE=${S}
281# if tc-is-cross-compiler ; then
282# mkdir "${WORKDIR}"/${CBUILD}
283# pushd "${WORKDIR}"/${CBUILD} >/dev/null
284# econf_build --disable-some-unused-stuff
285# popd >/dev/null
286# fi
287# ... normal build paths ...
288# }
289# src_compile() {
290# if tc-is-cross-compiler ; then
291# pushd "${WORKDIR}"/${CBUILD} >/dev/null
292# emake one-or-two-build-tools
293# ln/mv build-tools to normal build paths in ${S}/
294# popd >/dev/null
295# fi
296# ... normal build paths ...
297# }
298# @CODE
299econf_build() {
300 tc-env_build econf --build=${CBUILD:-${CHOST}} "$@"
301}
9 302
10inherit eutils 303# @FUNCTION: tc-has-openmp
304# @USAGE: [toolchain prefix]
305# @DESCRIPTION:
306# See if the toolchain supports OpenMP.
307tc-has-openmp() {
308 local base="${T}/test-tc-openmp"
309 cat <<-EOF > "${base}.c"
310 #include <omp.h>
311 int main() {
312 int nthreads, tid, ret = 0;
313 #pragma omp parallel private(nthreads, tid)
314 {
315 tid = omp_get_thread_num();
316 nthreads = omp_get_num_threads(); ret += tid + nthreads;
317 }
318 return ret;
319 }
320 EOF
321 $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null
322 local ret=$?
323 rm -f "${base}"*
324 return ${ret}
325}
11 326
12ECLASS=toolfuncs 327# @FUNCTION: tc-has-tls
13INHERITED="$INHERITED $ECLASS" 328# @USAGE: [-s|-c|-l] [toolchain prefix]
329# @DESCRIPTION:
330# See if the toolchain supports thread local storage (TLS). Use -s to test the
331# compiler, -c to also test the assembler, and -l to also test the C library
332# (the default).
333tc-has-tls() {
334 local base="${T}/test-tc-tls"
335 cat <<-EOF > "${base}.c"
336 int foo(int *i) {
337 static __thread int j = 0;
338 return *i ? j : *i;
339 }
340 EOF
341 local flags
342 case $1 in
343 -s) flags="-S";;
344 -c) flags="-c";;
345 -l) ;;
346 -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";;
347 esac
348 : ${flags:=-fPIC -shared -Wl,-z,defs}
349 [[ $1 == -* ]] && shift
350 $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null
351 local ret=$?
352 rm -f "${base}"*
353 return ${ret}
354}
14 355
15DESCRIPTION="Based on the ${ECLASS} eclass"
16 356
17tc-getPROG() { 357# Parse information from CBUILD/CHOST/CTARGET rather than
358# use external variables from the profile.
359tc-ninja_magic_to_arch() {
360ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; }
361
362 local type=$1
363 local host=$2
364 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
365
366 local KV=${KV:-${KV_FULL}}
367 [[ ${type} == "kern" ]] && [[ -z ${KV} ]] && \
368 ewarn "QA: Kernel version could not be determined, please inherit kernel-2 or linux-info"
369
370 case ${host} in
371 aarch64*) echo arm64;;
372 alpha*) echo alpha;;
373 arm*) echo arm;;
374 avr*) ninj avr32 avr;;
375 bfin*) ninj blackfin bfin;;
376 c6x) echo c6x;;
377 cris*) echo cris;;
378 frv) echo frv;;
379 hexagon) echo hexagon;;
380 hppa*) ninj parisc hppa;;
381 i?86*)
382 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
383 # trees have been unified into 'x86'.
384 # FreeBSD still uses i386
385 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -lt $(KV_to_int 2.6.24) || ${host} == *freebsd* ]] ; then
386 echo i386
387 else
388 echo x86
389 fi
390 ;;
391 ia64*) echo ia64;;
392 m68*) echo m68k;;
393 metag) echo metag;;
394 mips*) echo mips;;
395 nios2*) echo nios2;;
396 nios*) echo nios;;
397 or32) echo openrisc;;
398 powerpc*)
399 # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees
400 # have been unified into simply 'powerpc', but until 2.6.16,
401 # ppc32 is still using ARCH="ppc" as default
402 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] ; then
403 echo powerpc
404 elif [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] ; then
405 if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
406 echo powerpc
407 else
408 echo ppc
409 fi
410 elif [[ ${host} == powerpc64* ]] ; then
411 echo ppc64
412 elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then
413 ninj ppc64 ppc
414 else
415 echo ppc
416 fi
417 ;;
418 riscv*) echo riscv;;
419 s390*) echo s390;;
420 score) echo score;;
421 sh64*) ninj sh64 sh;;
422 sh*) echo sh;;
423 sparc64*) ninj sparc64 sparc;;
424 sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \
425 && ninj sparc64 sparc \
426 || echo sparc
427 ;;
428 tile*) echo tile;;
429 vax*) echo vax;;
430 x86_64*freebsd*) echo amd64;;
431 x86_64*)
432 # Starting with linux-2.6.24, the 'x86_64' and 'i386'
433 # trees have been unified into 'x86'.
434 if [[ ${type} == "kern" ]] && [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.24) ]] ; then
435 echo x86
436 else
437 ninj x86_64 amd64
438 fi
439 ;;
440 xtensa*) echo xtensa;;
441
442 # since our usage of tc-arch is largely concerned with
443 # normalizing inputs for testing ${CTARGET}, let's filter
444 # other cross targets (mingw and such) into the unknown.
445 *) echo unknown;;
446 esac
447}
448# @FUNCTION: tc-arch-kernel
449# @USAGE: [toolchain prefix]
450# @RETURN: name of the kernel arch according to the compiler target
451tc-arch-kernel() {
452 tc-ninja_magic_to_arch kern "$@"
453}
454# @FUNCTION: tc-arch
455# @USAGE: [toolchain prefix]
456# @RETURN: name of the portage arch according to the compiler target
457tc-arch() {
458 tc-ninja_magic_to_arch portage "$@"
459}
460
461tc-endian() {
462 local host=$1
463 [[ -z ${host} ]] && host=${CTARGET:-${CHOST}}
464 host=${host%%-*}
465
466 case ${host} in
467 aarch64*be) echo big;;
468 aarch64) echo little;;
469 alpha*) echo big;;
470 arm*b*) echo big;;
471 arm*) echo little;;
472 cris*) echo little;;
473 hppa*) echo big;;
474 i?86*) echo little;;
475 ia64*) echo little;;
476 m68*) echo big;;
477 mips*l*) echo little;;
478 mips*) echo big;;
479 powerpc*le) echo little;;
480 powerpc*) echo big;;
481 s390*) echo big;;
482 sh*b*) echo big;;
483 sh*) echo little;;
484 sparc*) echo big;;
485 x86_64*) echo little;;
486 *) echo wtf;;
487 esac
488}
489
490# Internal func. The first argument is the version info to expand.
491# Query the preprocessor to improve compatibility across different
492# compilers rather than maintaining a --version flag matrix. #335943
493_gcc_fullversion() {
18 local var="$1" 494 local ver="$1"; shift
19 local prog="$2" 495 set -- `$(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__"`
20 local search="" 496 eval echo "$ver"
497}
21 498
22 if [ -n "${!var}" ] ; then 499# @FUNCTION: gcc-fullversion
23 echo "${!var}" 500# @RETURN: compiler version (major.minor.micro: [3.4.6])
501gcc-fullversion() {
502 _gcc_fullversion '$1.$2.$3' "$@"
503}
504# @FUNCTION: gcc-version
505# @RETURN: compiler version (major.minor: [3.4].6)
506gcc-version() {
507 _gcc_fullversion '$1.$2' "$@"
508}
509# @FUNCTION: gcc-major-version
510# @RETURN: major compiler version (major: [3].4.6)
511gcc-major-version() {
512 _gcc_fullversion '$1' "$@"
513}
514# @FUNCTION: gcc-minor-version
515# @RETURN: minor compiler version (minor: 3.[4].6)
516gcc-minor-version() {
517 _gcc_fullversion '$2' "$@"
518}
519# @FUNCTION: gcc-micro-version
520# @RETURN: micro compiler version (micro: 3.4.[6])
521gcc-micro-version() {
522 _gcc_fullversion '$3' "$@"
523}
524
525# Returns the installation directory - internal toolchain
526# function for use by _gcc-specs-exists (for flag-o-matic).
527_gcc-install-dir() {
528 echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\
529 awk '$1=="install:" {print $2}')"
530}
531# Returns true if the indicated specs file exists - internal toolchain
532# function for use by flag-o-matic.
533_gcc-specs-exists() {
534 [[ -f $(_gcc-install-dir)/$1 ]]
535}
536
537# Returns requested gcc specs directive unprocessed - for used by
538# gcc-specs-directive()
539# Note; later specs normally overwrite earlier ones; however if a later
540# spec starts with '+' then it appends.
541# gcc -dumpspecs is parsed first, followed by files listed by "gcc -v"
542# as "Reading <file>", in order. Strictly speaking, if there's a
543# $(gcc_install_dir)/specs, the built-in specs aren't read, however by
544# the same token anything from 'gcc -dumpspecs' is overridden by
545# the contents of $(gcc_install_dir)/specs so the result is the
546# same either way.
547_gcc-specs-directive_raw() {
548 local cc=$(tc-getCC)
549 local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}')
550 ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \
551'BEGIN { pspec=""; spec=""; outside=1 }
552$1=="*"directive":" { pspec=spec; spec=""; outside=0; next }
553 outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next }
554 spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next }
555 { spec=spec $0 }
556END { print spec }'
24 return 0 557 return 0
558}
559
560# Return the requested gcc specs directive, with all included
561# specs expanded.
562# Note, it does not check for inclusion loops, which cause it
563# to never finish - but such loops are invalid for gcc and we're
564# assuming gcc is operational.
565gcc-specs-directive() {
566 local directive subdname subdirective
567 directive="$(_gcc-specs-directive_raw $1)"
568 while [[ ${directive} == *%\(*\)* ]]; do
569 subdname=${directive/*%\(}
570 subdname=${subdname/\)*}
571 subdirective="$(_gcc-specs-directive_raw ${subdname})"
572 directive="${directive//\%(${subdname})/${subdirective}}"
573 done
574 echo "${directive}"
575 return 0
576}
577
578# Returns true if gcc sets relro
579gcc-specs-relro() {
580 local directive
581 directive=$(gcc-specs-directive link_command)
582 [[ "${directive/\{!norelro:}" != "${directive}" ]]
583}
584# Returns true if gcc sets now
585gcc-specs-now() {
586 local directive
587 directive=$(gcc-specs-directive link_command)
588 [[ "${directive/\{!nonow:}" != "${directive}" ]]
589}
590# Returns true if gcc builds PIEs
591gcc-specs-pie() {
592 local directive
593 directive=$(gcc-specs-directive cc1)
594 [[ "${directive/\{!nopie:}" != "${directive}" ]]
595}
596# Returns true if gcc builds with the stack protector
597gcc-specs-ssp() {
598 local directive
599 directive=$(gcc-specs-directive cc1)
600 [[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]]
601}
602# Returns true if gcc upgrades fstack-protector to fstack-protector-all
603gcc-specs-ssp-to-all() {
604 local directive
605 directive=$(gcc-specs-directive cc1)
606 [[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]]
607}
608# Returns true if gcc builds with fno-strict-overflow
609gcc-specs-nostrict() {
610 local directive
611 directive=$(gcc-specs-directive cc1)
612 [[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]]
613}
614# Returns true if gcc builds with fstack-check
615gcc-specs-stack-check() {
616 local directive
617 directive=$(gcc-specs-directive cc1)
618 [[ "${directive/\{!fno-stack-check:}" != "${directive}" ]]
619}
620
621
622# @FUNCTION: gen_usr_ldscript
623# @USAGE: [-a] <list of libs to create linker scripts for>
624# @DESCRIPTION:
625# This function generate linker scripts in /usr/lib for dynamic
626# libs in /lib. This is to fix linking problems when you have
627# the .so in /lib, and the .a in /usr/lib. What happens is that
628# in some cases when linking dynamic, the .a in /usr/lib is used
629# instead of the .so in /lib due to gcc/libtool tweaking ld's
630# library search path. This causes many builds to fail.
631# See bug #4411 for more info.
632#
633# Note that you should in general use the unversioned name of
634# the library (libfoo.so), as ldconfig should usually update it
635# correctly to point to the latest version of the library present.
636gen_usr_ldscript() {
637 local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname)
638 [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/
639
640 tc-is-static-only && return
641
642 # Eventually we'd like to get rid of this func completely #417451
643 case ${CTARGET:-${CHOST}} in
644 *-darwin*) ;;
645 *linux*|*-freebsd*|*-openbsd*|*-netbsd*)
646 use prefix && return 0 ;;
647 *) return 0 ;;
648 esac
649
650 # Just make sure it exists
651 dodir /usr/${libdir}
652
653 if [[ $1 == "-a" ]] ; then
654 auto=true
655 shift
656 dodir /${libdir}
25 fi 657 fi
26 658
27 # how should we handle the host/target/build ? 659 # OUTPUT_FORMAT gives hints to the linker as to what binary format
28 if [ -n "${CHOST}" ] ; then 660 # is referenced ... makes multilib saner
29 search="$(type -p "${CHOST}-${prog}")" 661 local flags=( ${CFLAGS} ${LDFLAGS} -Wl,--verbose )
662 if $(tc-getLD) --version | grep -q 'GNU gold' ; then
663 # If they're using gold, manually invoke the old bfd. #487696
664 local d="${T}/bfd-linker"
665 mkdir -p "${d}"
666 ln -sf $(which ${CHOST}-ld.bfd) "${d}"/ld
667 flags+=( -B"${d}" )
668 fi
669 output_format=$($(tc-getCC) "${flags[@]}" 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p')
670 [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )"
671
672 for lib in "$@" ; do
673 local tlib
674 if ${auto} ; then
675 lib="lib${lib}${suffix}"
30 else 676 else
31 if [ -n "${CTARGET}" ] ; then 677 # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks.
32 search="$(type -p "${CTARGET}-${prog}")" 678 # This especially is for AIX where $(get_libname) can return ".a",
679 # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident).
680 [[ -r ${ED}/${libdir}/${lib} ]] || continue
681 #TODO: better die here?
33 fi 682 fi
683
684 case ${CTARGET:-${CHOST}} in
685 *-darwin*)
686 if ${auto} ; then
687 tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
688 else
689 tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib})
690 fi
691 [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}"
692 tlib=${tlib##*/}
693
694 if ${auto} ; then
695 mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
696 # some install_names are funky: they encode a version
697 if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then
698 mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die
699 fi
700 rm -f "${ED}"/${libdir}/${lib}
701 fi
702
703 # Mach-O files have an id, which is like a soname, it tells how
704 # another object linking against this lib should reference it.
705 # Since we moved the lib from usr/lib into lib this reference is
706 # wrong. Hence, we update it here. We don't configure with
707 # libdir=/lib because that messes up libtool files.
708 # Make sure we don't lose the specific version, so just modify the
709 # existing install_name
710 if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then
711 chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it
712 local nowrite=yes
713 fi
714 install_name_tool \
715 -id "${EPREFIX}"/${libdir}/${tlib} \
716 "${ED}"/${libdir}/${tlib} || die "install_name_tool failed"
717 [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}"
718 # Now as we don't use GNU binutils and our linker doesn't
719 # understand linker scripts, just create a symlink.
720 pushd "${ED}/usr/${libdir}" > /dev/null
721 ln -snf "../../${libdir}/${tlib}" "${lib}"
722 popd > /dev/null
723 ;;
724 *)
725 if ${auto} ; then
726 tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib})
727 [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}"
728 mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die
729 # some SONAMEs are funky: they encode a version before the .so
730 if [[ ${tlib} != ${lib}* ]] ; then
731 mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die
732 fi
733 rm -f "${ED}"/${libdir}/${lib}
734 else
735 tlib=${lib}
736 fi
737 cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT
738 /* GNU ld script
739 Since Gentoo has critical dynamic libraries in /lib, and the static versions
740 in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we
741 run into linking problems. This "fake" dynamic lib is a linker script that
742 redirects the linker to the real lib. And yes, this works in the cross-
743 compiling scenario as the sysroot-ed linker will prepend the real path.
744
745 See bug http://bugs.gentoo.org/4411 for more info.
746 */
747 ${output_format}
748 GROUP ( ${EPREFIX}/${libdir}/${tlib} )
749 END_LDSCRIPT
750 ;;
751 esac
752 fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}"
753 done
754}
755
34 fi 756fi
35
36 if [ -z "${search}" ] ; then
37 prog="${search##*/}"
38 fi
39 export ${var}="${prog}"
40 echo "${!var}"
41}
42
43# Returns the name of the archiver
44tc-getAR() { tc-getPROG AR ar; }
45# Returns the name of the assembler
46tc-getAS() { tc-getPROG AS as; }
47# Returns the name of the C compiler
48tc-getCC() { tc-getPROG CC gcc; }
49# Returns the name of the C++ compiler
50tc-getCXX() { tc-getPROG CXX g++; }
51# Returns the name of the linker
52tc-getLD() { tc-getPROG LD ld; }
53# Returns the name of the symbol/object thingy
54tc-getNM() { tc-getPROG NM nm; }
55# Returns the name of the archiver indexer
56tc-getRANLIB() { tc-getPROG RANLIB ranlib; }
57
58
59
60# Returns the version as by `$CC -dumpversion`
61gcc-fullversion() {
62 echo "$($(tc-getCC) -dumpversion)"
63}
64# Returns the version, but only the <major>.<minor>
65gcc-version() {
66 echo "$(cc-fullversion | cut -f1,2 -d.)"
67}
68# Returns the Major version
69gcc-major-version() {
70 echo "$(cc-version | cut -f1 -d.)"
71}
72# Returns the Minor version
73gcc-minor-version() {
74 echo "$(cc-version | cut -f2 -d.)"
75}
76# Returns the Micro version
77gcc-micro-version() {
78 echo "$(cc-fullversion | cut -f3 -d.)"
79}

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.131

  ViewVC Help
Powered by ViewVC 1.1.20