1 |
# Copyright 1999-2007 Gentoo Foundation |
2 |
# Distributed under the terms of the GNU General Public License v2 |
3 |
# $Header: /var/cvsroot/gentoo-x86/eclass/toolchain-funcs.eclass,v 1.69 2007/03/27 01:46:50 vapier Exp $ |
4 |
# |
5 |
# Maintainer: Toolchain Ninjas <toolchain@gentoo.org> |
6 |
# |
7 |
# This eclass contains (or should) functions to get common info |
8 |
# about the toolchain (libc/compiler/binutils/etc...) |
9 |
|
10 |
___ECLASS_RECUR_TOOLCHAIN_FUNCS="yes" |
11 |
[[ -z ${___ECLASS_RECUR_MULTILIB} ]] && inherit multilib |
12 |
|
13 |
DESCRIPTION="Based on the ${ECLASS} eclass" |
14 |
|
15 |
tc-getPROG() { |
16 |
local var=$1 |
17 |
local prog=$2 |
18 |
|
19 |
if [[ -n ${!var} ]] ; then |
20 |
echo "${!var}" |
21 |
return 0 |
22 |
fi |
23 |
|
24 |
local search= |
25 |
[[ -n $3 ]] && search=$(type -p "$3-${prog}") |
26 |
[[ -z ${search} && -n ${CHOST} ]] && search=$(type -p "${CHOST}-${prog}") |
27 |
[[ -n ${search} ]] && prog=${search##*/} |
28 |
|
29 |
export ${var}=${prog} |
30 |
echo "${!var}" |
31 |
} |
32 |
|
33 |
# Returns the name of the archiver |
34 |
tc-getAR() { tc-getPROG AR ar "$@"; } |
35 |
# Returns the name of the assembler |
36 |
tc-getAS() { tc-getPROG AS as "$@"; } |
37 |
# Returns the name of the C compiler |
38 |
tc-getCC() { tc-getPROG CC gcc "$@"; } |
39 |
# Returns the name of the C preprocessor |
40 |
tc-getCPP() { tc-getPROG CPP cpp "$@"; } |
41 |
# Returns the name of the C++ compiler |
42 |
tc-getCXX() { tc-getPROG CXX g++ "$@"; } |
43 |
# Returns the name of the linker |
44 |
tc-getLD() { tc-getPROG LD ld "$@"; } |
45 |
# Returns the name of the strip prog |
46 |
tc-getSTRIP() { tc-getPROG STRIP strip "$@"; } |
47 |
# Returns the name of the symbol/object thingy |
48 |
tc-getNM() { tc-getPROG NM nm "$@"; } |
49 |
# Returns the name of the archiver indexer |
50 |
tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; } |
51 |
# Returns the name of the fortran 77 compiler |
52 |
tc-getF77() { tc-getPROG F77 f77 "$@"; } |
53 |
# Returns the name of the fortran 90 compiler |
54 |
tc-getF90() { tc-getPROG F90 gfortran "$@"; } |
55 |
# Returns the name of the fortran compiler |
56 |
tc-getFORTRAN() { tc-getPROG FORTRAN gfortran "$@"; } |
57 |
# Returns the name of the java compiler |
58 |
tc-getGCJ() { tc-getPROG GCJ gcj "$@"; } |
59 |
|
60 |
# Returns the name of the C compiler for build |
61 |
tc-getBUILD_CC() { |
62 |
local v |
63 |
for v in CC_FOR_BUILD BUILD_CC HOSTCC ; do |
64 |
if [[ -n ${!v} ]] ; then |
65 |
export BUILD_CC=${!v} |
66 |
echo "${!v}" |
67 |
return 0 |
68 |
fi |
69 |
done |
70 |
|
71 |
local search= |
72 |
if [[ -n ${CBUILD} ]] ; then |
73 |
search=$(type -p ${CBUILD}-gcc) |
74 |
search=${search##*/} |
75 |
fi |
76 |
search=${search:-gcc} |
77 |
|
78 |
export BUILD_CC=${search} |
79 |
echo "${search}" |
80 |
} |
81 |
|
82 |
# Quick way to export a bunch of vars at once |
83 |
tc-export() { |
84 |
local var |
85 |
for var in "$@" ; do |
86 |
eval tc-get${var} > /dev/null |
87 |
done |
88 |
} |
89 |
|
90 |
# A simple way to see if we're using a cross-compiler ... |
91 |
tc-is-cross-compiler() { |
92 |
return $([[ ${CBUILD:-${CHOST}} != ${CHOST} ]]) |
93 |
} |
94 |
|
95 |
# See if this toolchain is a softfloat based one. |
96 |
# The possible return values: |
97 |
# - only: the target is always softfloat (never had fpu) |
98 |
# - yes: the target should support softfloat |
99 |
# - no: the target should support hardfloat |
100 |
# This allows us to react differently where packages accept |
101 |
# softfloat flags in the case where support is optional, but |
102 |
# rejects softfloat flags where the target always lacks an fpu. |
103 |
tc-is-softfloat() { |
104 |
case ${CTARGET} in |
105 |
bfin*|h8300*) |
106 |
echo "only" ;; |
107 |
*) |
108 |
[[ ${CTARGET//_/-} == *-softfloat-* ]] \ |
109 |
&& echo "yes" \ |
110 |
|| echo "no" |
111 |
;; |
112 |
esac |
113 |
} |
114 |
|
115 |
# Parse information from CBUILD/CHOST/CTARGET rather than |
116 |
# use external variables from the profile. |
117 |
tc-ninja_magic_to_arch() { |
118 |
ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; } |
119 |
|
120 |
local type=$1 |
121 |
local host=$2 |
122 |
[[ -z ${host} ]] && host=${CTARGET:-${CHOST}} |
123 |
|
124 |
case ${host} in |
125 |
alpha*) echo alpha;; |
126 |
arm*) echo arm;; |
127 |
bfin*) ninj blackfin bfin;; |
128 |
cris*) echo cris;; |
129 |
hppa*) ninj parisc hppa;; |
130 |
i?86*) ninj i386 x86;; |
131 |
ia64*) echo ia64;; |
132 |
m68*) echo m68k;; |
133 |
mips*) echo mips;; |
134 |
nios2*) echo nios2;; |
135 |
nios*) echo nios;; |
136 |
powerpc*) |
137 |
# Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees |
138 |
# have been unified into simply 'powerpc', but until 2.6.16, |
139 |
# ppc32 is still using ARCH="ppc" as default |
140 |
if [[ $(KV_to_int ${KV}) -ge $(KV_to_int 2.6.16) ]] && [[ ${type} == "kern" ]] ; then |
141 |
echo powerpc |
142 |
elif [[ $(KV_to_int ${KV}) -eq $(KV_to_int 2.6.15) ]] && [[ ${type} == "kern" ]] ; then |
143 |
if [[ ${host} == powerpc64* ]] || [[ ${PROFILE_ARCH} == "ppc64" ]] ; then |
144 |
echo powerpc |
145 |
else |
146 |
echo ppc |
147 |
fi |
148 |
elif [[ ${host} == powerpc64* ]] ; then |
149 |
echo ppc64 |
150 |
elif [[ ${PROFILE_ARCH} == "ppc64" ]] ; then |
151 |
ninj ppc64 ppc |
152 |
else |
153 |
echo ppc |
154 |
fi |
155 |
;; |
156 |
s390*) echo s390;; |
157 |
sh64*) ninj sh64 sh;; |
158 |
sh*) echo sh;; |
159 |
sparc64*) ninj sparc64 sparc;; |
160 |
sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \ |
161 |
&& ninj sparc64 sparc \ |
162 |
|| echo sparc |
163 |
;; |
164 |
vax*) echo vax;; |
165 |
x86_64*) ninj x86_64 amd64;; |
166 |
*) echo ${ARCH};; |
167 |
esac |
168 |
} |
169 |
tc-arch-kernel() { |
170 |
tc-ninja_magic_to_arch kern $@ |
171 |
} |
172 |
tc-arch() { |
173 |
tc-ninja_magic_to_arch portage $@ |
174 |
} |
175 |
|
176 |
# Returns the version as by `$CC -dumpversion` |
177 |
gcc-fullversion() { |
178 |
$(tc-getCC "$@") -dumpversion |
179 |
} |
180 |
# Returns the version, but only the <major>.<minor> |
181 |
gcc-version() { |
182 |
gcc-fullversion "$@" | cut -f1,2 -d. |
183 |
} |
184 |
# Returns the Major version |
185 |
gcc-major-version() { |
186 |
gcc-version "$@" | cut -f1 -d. |
187 |
} |
188 |
# Returns the Minor version |
189 |
gcc-minor-version() { |
190 |
gcc-version "$@" | cut -f2 -d. |
191 |
} |
192 |
# Returns the Micro version |
193 |
gcc-micro-version() { |
194 |
gcc-fullversion "$@" | cut -f3 -d. | cut -f1 -d- |
195 |
} |
196 |
# Returns the installation directory - internal toolchain |
197 |
# function for use by _gcc-specs-exists (for flag-o-matic). |
198 |
_gcc-install-dir() { |
199 |
echo "$($(tc-getCC) -print-search-dirs 2> /dev/null |\ |
200 |
awk '$1=="install:" {print $2}')" |
201 |
} |
202 |
# Returns true if the indicated specs file exists - internal toolchain |
203 |
# function for use by flag-o-matic. |
204 |
_gcc-specs-exists() { |
205 |
[[ -f $(_gcc-install-dir)/$1 ]] |
206 |
} |
207 |
|
208 |
# Returns requested gcc specs directive unprocessed - for used by |
209 |
# gcc-specs-directive() |
210 |
# Note; later specs normally overwrite earlier ones; however if a later |
211 |
# spec starts with '+' then it appends. |
212 |
# gcc -dumpspecs is parsed first, followed by files listed by "gcc -v" |
213 |
# as "Reading <file>", in order. Strictly speaking, if there's a |
214 |
# $(gcc_install_dir)/specs, the built-in specs aren't read, however by |
215 |
# the same token anything from 'gcc -dumpspecs' is overridden by |
216 |
# the contents of $(gcc_install_dir)/specs so the result is the |
217 |
# same either way. |
218 |
_gcc-specs-directive_raw() { |
219 |
local cc=$(tc-getCC) |
220 |
local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}') |
221 |
${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \ |
222 |
'BEGIN { pspec=""; spec=""; outside=1 } |
223 |
$1=="*"directive":" { pspec=spec; spec=""; outside=0; next } |
224 |
outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next } |
225 |
spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next } |
226 |
{ spec=spec $0 } |
227 |
END { print spec }' |
228 |
return 0 |
229 |
} |
230 |
|
231 |
# Return the requested gcc specs directive, with all included |
232 |
# specs expanded. |
233 |
# Note, it does not check for inclusion loops, which cause it |
234 |
# to never finish - but such loops are invalid for gcc and we're |
235 |
# assuming gcc is operational. |
236 |
gcc-specs-directive() { |
237 |
local directive subdname subdirective |
238 |
directive="$(_gcc-specs-directive_raw $1)" |
239 |
while [[ ${directive} == *%\(*\)* ]]; do |
240 |
subdname=${directive/*%\(} |
241 |
subdname=${subdname/\)*} |
242 |
subdirective="$(_gcc-specs-directive_raw ${subdname})" |
243 |
directive="${directive//\%(${subdname})/${subdirective}}" |
244 |
done |
245 |
echo "${directive}" |
246 |
return 0 |
247 |
} |
248 |
|
249 |
# Returns true if gcc sets relro |
250 |
gcc-specs-relro() { |
251 |
local directive |
252 |
directive=$(gcc-specs-directive link_command) |
253 |
return $([[ ${directive/\{!norelro:} != ${directive} ]]) |
254 |
} |
255 |
# Returns true if gcc sets now |
256 |
gcc-specs-now() { |
257 |
local directive |
258 |
directive=$(gcc-specs-directive link_command) |
259 |
return $([[ ${directive/\{!nonow:} != ${directive} ]]) |
260 |
} |
261 |
# Returns true if gcc builds PIEs |
262 |
gcc-specs-pie() { |
263 |
local directive |
264 |
directive=$(gcc-specs-directive cc1) |
265 |
return $([[ ${directive/\{!nopie:} != ${directive} ]]) |
266 |
} |
267 |
# Returns true if gcc builds with the stack protector |
268 |
gcc-specs-ssp() { |
269 |
local directive |
270 |
directive=$(gcc-specs-directive cc1) |
271 |
return $([[ ${directive/\{!fno-stack-protector:} != ${directive} ]]) |
272 |
} |
273 |
# Returns true if gcc upgrades fstack-protector to fstack-protector-all |
274 |
gcc-specs-ssp-to-all() { |
275 |
local directive |
276 |
directive=$(gcc-specs-directive cc1) |
277 |
return $([[ ${directive/\{!fno-stack-protector-all:} != ${directive} ]]) |
278 |
} |
279 |
|
280 |
|
281 |
# This function generate linker scripts in /usr/lib for dynamic |
282 |
# libs in /lib. This is to fix linking problems when you have |
283 |
# the .so in /lib, and the .a in /usr/lib. What happens is that |
284 |
# in some cases when linking dynamic, the .a in /usr/lib is used |
285 |
# instead of the .so in /lib due to gcc/libtool tweaking ld's |
286 |
# library search path. This cause many builds to fail. |
287 |
# See bug #4411 for more info. |
288 |
# |
289 |
# To use, simply call: |
290 |
# |
291 |
# gen_usr_ldscript libfoo.so |
292 |
# |
293 |
# Note that you should in general use the unversioned name of |
294 |
# the library, as ldconfig should usually update it correctly |
295 |
# to point to the latest version of the library present. |
296 |
gen_usr_ldscript() { |
297 |
local lib libdir=$(get_libdir) output_format="" |
298 |
# Just make sure it exists |
299 |
dodir /usr/${libdir} |
300 |
|
301 |
# OUTPUT_FORMAT gives hints to the linker as to what binary format |
302 |
# is referenced ... makes multilib saner |
303 |
output_format=$($(tc-getCC) ${CFLAGS} ${LDFLAGS} -Wl,--verbose 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p') |
304 |
[[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )" |
305 |
|
306 |
for lib in "$@" ; do |
307 |
if [[ ${USERLAND} == "Darwin" ]] ; then |
308 |
ewarn "Not creating fake dynamic library for $lib on Darwin;" |
309 |
ewarn "making a symlink instead." |
310 |
dosym "/${libdir}/${lib}" "/usr/${libdir}/${lib}" |
311 |
else |
312 |
cat > "${D}/usr/${libdir}/${lib}" <<-END_LDSCRIPT |
313 |
/* GNU ld script |
314 |
Since Gentoo has critical dynamic libraries |
315 |
in /lib, and the static versions in /usr/lib, |
316 |
we need to have a "fake" dynamic lib in /usr/lib, |
317 |
otherwise we run into linking problems. |
318 |
|
319 |
See bug http://bugs.gentoo.org/4411 for more info. |
320 |
*/ |
321 |
${output_format} |
322 |
GROUP ( /${libdir}/${lib} ) |
323 |
END_LDSCRIPT |
324 |
fi |
325 |
fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}" |
326 |
done |
327 |
} |