/[gentoo]/xml/htdocs/doc/en/handbook/hb-install-ppc64-disk.xml
Gentoo

Contents of /xml/htdocs/doc/en/handbook/hb-install-ppc64-disk.xml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.7 - (hide annotations) (download) (as text)
Tue Nov 2 11:52:49 2004 UTC (11 years, 10 months ago) by sejo
Branch: MAIN
Changes since 1.6: +9 -2 lines
File MIME type: application/xml
bug 69006

1 swift 1.1 <?xml version='1.0' encoding='UTF-8'?>
2     <!DOCTYPE sections SYSTEM "/dtd/book.dtd">
3    
4     <!-- The content of this document is licensed under the CC-BY-SA license -->
5     <!-- See http://creativecommons.org/licenses/by-sa/1.0 -->
6    
7 sejo 1.7 <!-- $Header: /var/cvsroot/gentoo/xml/htdocs/doc/en/handbook/hb-install-ppc64-disk.xml,v 1.6 2004/09/14 11:55:12 swift Exp $ -->
8 swift 1.1
9     <sections>
10     <section>
11     <title>Introduction to Block Devices</title>
12     <subsection>
13     <title>Block Devices</title>
14     <body>
15    
16     <p>
17     We'll take a good look at disk-oriented aspects of Gentoo Linux
18     and Linux in general, including Linux filesystems, partitions and block devices.
19     Then, once you're familiar with the ins and outs of disks and filesystems,
20     you'll be guided through the process of setting up partitions and filesystems
21     for your Gentoo Linux installation.
22     </p>
23    
24     <p>
25     To begin, we'll introduce <e>block devices</e>. The most famous block device is
26     probably the one that represents the first IDE drive in a Linux system, namely
27     <path>/dev/hda</path>. If your system uses SCSI drives, then your first hard
28     drive would be <path>/dev/sda</path>. Serial ATA drives are also
29     <path>/dev/sda</path> even if they are IDE drives.
30     </p>
31    
32     <p>
33     The block devices above represent an abstract interface to the disk. User
34     programs can use these block devices to interact with your disk without worrying
35     about whether your drives are IDE, SCSI or something else. The program can
36     simply address the storage on the disk as a bunch of contiguous,
37     randomly-accessible 512-byte blocks.
38     </p>
39    
40     </body>
41     </subsection>
42     <subsection>
43     <title>Partitions and Slices</title>
44     <body>
45    
46     <p>
47     Although it is theoretically possible to use a full disk to house your Linux
48     system, this is almost never done in practice. Instead, full disk block devices
49     are split up in smaller, more manageable block devices. On most systems,
50     these are called <e>partitions</e>. Other architectures use a similar technique,
51     called <e>slices</e>.
52     </p>
53    
54     </body>
55     </subsection>
56     </section>
57     <section>
58     <title>Designing a Partitioning Scheme</title>
59     <subsection>
60     <title>Default Partitioning Scheme</title>
61     <body>
62    
63     <p>
64     If you are not interested in drawing up a partitioning scheme for your system,
65     you can use the partitioning scheme we use throughout this book:
66     </p>
67    
68     <table>
69     <tr>
70     <th>Partition</th>
71     <th>Filesystem</th>
72     <th>Size</th>
73     <th>Description</th>
74     </tr>
75     <tr>
76     <ti><path>/dev/sda1</path></ti>
77     <ti>Partition map</ti>
78     <ti>31.5k</ti>
79     <ti>Partition map</ti>
80     </tr>
81     <tr>
82     <ti><path>/dev/sda2</path></ti>
83     <ti>(bootstrap)</ti>
84     <ti>800k</ti>
85     <ti>Apple_Bootstrap</ti>
86     </tr>
87     <tr>
88     <ti><path>/dev/sda3</path></ti>
89     <ti>(swap)</ti>
90     <ti>512M</ti>
91     <ti>Swap partition</ti>
92     </tr>
93     <tr>
94     <ti><path>/dev/sda4</path></ti>
95     <ti>ext3</ti>
96     <ti>Rest of the disk</ti>
97     <ti>Root partition</ti>
98     </tr>
99     </table>
100    
101     <note>
102     There are some partitions named like this: <path>Apple_Driver43,
103     Apple_Driver_ATA, Apple_FWDriver, Apple_Driver_IOKit,
104     Apple_Patches</path>. If you are not planning to use MacOS 9 you can
105     delete them, because MacOS X and Linux don't need them.
106 sejo 1.7 You might have to use parted in order to delete them, as mac-fdisk can't delete them yet.
107 swift 1.1 </note>
108    
109     <p>
110     If you are interested in knowing how big a partition should be, or even how
111     many partitions you need, read on. Otherwise continue now with
112     <uri link="#mac-fdisk">Apple G5: Using mac-fdisk to Partition your
113     Disk</uri> or <uri link="#fdisk">IBM pSeries: using fdisk to Partition
114     your Disk</uri>
115     </p>
116    
117     </body>
118     </subsection>
119     <subsection>
120     <title>How Many and How Big?</title>
121     <body>
122    
123     <p>
124     The number of partitions is highly dependent on your environment. For instance,
125     if you have lots of users, you will most likely want to have your
126     <path>/home</path> separate as it increases security and makes backups easier.
127     If you are installing Gentoo to perform as a mailserver, your
128     <path>/var</path> should be separate as all mails are stored inside
129     <path>/var</path>. A good choice of filesystem will then maximise your
130     performance. Gameservers will have a separate <path>/opt</path> as most gaming
131     servers are installed there. The reason is similar for <path>/home</path>:
132     security and backups.
133     </p>
134    
135     <p>
136     As you can see, it very much depends on what you want to achieve. Separate
137     partitions or volumes have the following advantages:
138     </p>
139    
140     <ul>
141     <li>
142 neysx 1.3 You can choose the best performing filesystem for each partition or volume
143 swift 1.1 </li>
144     <li>
145     Your entire system cannot run out of free space if one defunct tool is
146     continuously writing files to a partition or volume
147     </li>
148     <li>
149     If necessary, file system checks are reduced in time, as multiple checks can
150     be done in parallel (although this advantage is more with multiple disks than
151     it is with multiple partitions)
152     </li>
153     <li>
154     Security can be enhanced by mounting some partitions or volumes read-only,
155     nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.
156     </li>
157     </ul>
158    
159     <p>
160     However, multiple partitions have one big disadvantage: if not configured
161     properly, you might result in having a system with lots
162 swift 1.4 of free space on one partition and none on another. There is also a 15-partition
163 swift 1.6 limit for SCSI and SATA.
164 swift 1.1 </p>
165    
166     </body>
167     </subsection>
168     </section>
169     <section id="mac-fdisk">
170     <title>Default: Using mac-fdisk (Apple G5) Partition your Disk</title>
171     <body>
172    
173     <p>
174     At this point, create your partitions using <c>mac-fdisk</c>:
175     </p>
176    
177     <pre caption="Starting mac-fdisk">
178 swift 1.2 # <i>mac-fdisk /dev/sda</i>
179 swift 1.1 </pre>
180    
181     <p>
182     First delete the partitions you have cleared previously to make room for your
183     Linux partitions. Use <c>d</c> in <c>mac-fdisk</c> to delete those partition(s).
184     It will ask for the partition number to delete.
185     </p>
186    
187     <p>
188     Second, create an <e>Apple_Bootstrap</e> partition by using <c>b</c>. It will
189     ask for what block you want to start. Enter the number of your first free
190     partition, followed by a <c>p</c>. For instance this is <c>1p</c>.
191     </p>
192    
193     <note>
194     This partition is <e>not</e> a "boot" partition. It is not used by Linux at all;
195     you don't have to place any filesystem on it and you should never mount it. PPC
196     users don't need a an extra partition for <path>/boot</path>.
197     </note>
198    
199     <p>
200     Now create a swap partition by pressing <c>c</c>. Again <c>mac-fdisk</c> will
201     ask for what block you want to start this partition from. As we used <c>1</c>
202     before to create the Apple_Bootstrap partition, you now have to enter
203     <c>2p</c>. When you're asked for the size, enter <c>512M</c> (or whatever size
204     you want -- 512MB is recommended though). When asked for a name, enter <c>swap</c>
205     (mandatory).
206     </p>
207    
208     <p>
209     To create the root partition, enter <c>c</c>, followed by <c>3p</c> to select
210     from what block the root partition should start. When asked for the size, enter
211     <c>3p</c> again. <c>mac-fdisk</c> will interpret this as "Use all available
212     space". When asked for the name, enter <c>root</c> (mandatory).
213     </p>
214    
215     <p>
216     To finish up, write the partition to the disk using <c>w</c> and <c>q</c> to
217     quit <c>mac-fdisk</c>.
218     </p>
219 sejo 1.7
220     <note>
221     To make sure everything is ok, you should run mac-fdisk once more and check whether all the partitions are there.
222     If you don't see any of the partitions you created, or the changes you made, you should reinitialize your partitions by pressing "i" in mac-fdisk.
223     Note that this will recreate the partition map and thus remove all your partitions.
224     </note>
225    
226 swift 1.1 <p>
227     Now that your partitions are created, you can now continue with <uri
228     link="#filesystems">Creating Filesystems</uri>.
229     </p>
230    
231     </body>
232     </section>
233     <section id="fdisk">
234     <title>IBM pSeries: using fdisk to Partition your Disk</title>
235     <subsection>
236     <body>
237    
238     <p>
239     The following parts explain how to create the example partition layout
240     described previously, namely:
241     </p>
242    
243     <table>
244     <tr>
245     <th>Partition</th>
246     <th>Description</th>
247     </tr>
248     <tr>
249     <ti><path>/dev/sda1</path></ti>
250     <ti>PPC PReP Boot partition</ti>
251     </tr>
252     <tr>
253     <ti><path>/dev/sda2</path></ti>
254     <ti>Swap partition</ti>
255     </tr>
256     <tr>
257     <ti><path>/dev/sda3</path></ti>
258     <ti>Root partition</ti>
259     </tr>
260     </table>
261    
262     <p>
263 neysx 1.5 Change your partition layout according to your own preference.
264 swift 1.1 </p>
265    
266     </body>
267     </subsection>
268     <subsection>
269     <title>Viewing the Current Partition Layout</title>
270     <body>
271    
272     <p>
273     <c>fdisk</c> is a popular and powerful tool to split your disk into
274     partitions. Fire up <c>fdisk</c> on your disk (in our example, we
275     use <path>/dev/sda</path>):
276     </p>
277    
278     <pre caption="Starting fdisk">
279     # <i>fdisk /dev/sda</i>
280     </pre>
281    
282     <p>
283     Once in <c>fdisk</c>, you'll be greeted with a prompt that looks like
284     this:
285     </p>
286    
287     <pre caption="fdisk prompt">
288     Command (m for help):
289     </pre>
290    
291     <p>
292     Type <c>p</c> to display your disk's current partition configuration:
293     </p>
294    
295     <pre caption="An example partition configuration">
296     Command (m for help): p
297    
298     Disk /dev/sda: 30.7 GB, 30750031872 bytes
299     141 heads, 63 sectors/track, 6761 cylinders
300     Units = cylinders of 8883 * 512 = 4548096 bytes
301    
302     Device Boot Start End Blocks Id System
303     /dev/hdb1 1 12 53266+ 83 Linux
304     /dev/hdb2 13 233 981571+ 82 Linux swap
305     /dev/hdb3 234 674 1958701+ 83 Linux
306     /dev/hdb4 675 6761 27035410+ 5 Extended
307     /dev/hdb5 675 2874 9771268+ 83 Linux
308     /dev/hdb6 2875 2919 199836 83 Linux
309     /dev/hdb7 2920 3008 395262 83 Linux
310     /dev/hdb8 3009 6761 16668918 83 Linux
311    
312     Command (m for help):
313     </pre>
314    
315     <p>
316     This particular disk is configured to house seven Linux filesystems
317     (each with a corresponding partition listed as "Linux") as well as a
318     swap partition (listed as "Linux swap").
319     </p>
320    
321     </body>
322     </subsection>
323     <subsection>
324     <title>Removing all Partitions</title>
325     <body>
326    
327     <p>
328     We will first remove all existing partitions from the disk. Type
329     <c>d</c> to delete a partition. For instance, to delete an existing
330     <path>/dev/sda1</path>:
331     </p>
332    
333     <note>If you don't want to delete all partitions just delete those you
334     want to delete. At this point the author recommends a backup of your
335     data to avoid the lose of it.
336     </note>
337    
338     <pre caption="Deleting a partition">
339     Command (m for help): <i>d</i>
340     Partition number (1-4): <i>1</i>
341     </pre>
342    
343     <p>
344     The partition has been scheduled for deletion. It will no longer show up
345     if you type <c>p</c>, but it will not be erased until your changes have
346     been saved. If you made a mistake and want to abort without saving your
347     changes, type <c>q</c> immediately and hit enter and your partition will
348     not be deleted.
349     </p>
350    
351     <p>
352     Now, assuming that you do indeed want to wipe out all the partitions on
353     your system, repeatedly type <c>p</c> to print out a partition listing
354     and then type <c>d</c> and the number of the partition to delete it.
355     Eventually, you'll end up with a partition table with nothing in it:
356     </p>
357    
358     <pre caption="An empty partition table">
359     Disk /dev/sda: 30.7 GB, 30750031872 bytes
360     141 heads, 63 sectors/track, 6761 cylinders
361     Units = cylinders of 8883 * 512 = 4548096 bytes
362    
363     Device Boot Start End Blocks Id System
364    
365     Command (m for help):
366     </pre>
367    
368     <p>
369     Now that the in-memory partition table is empty, we're ready to create
370     the partitions. We will use a default partitioning scheme as discussed
371     previously. Of course, don't follow these instructions to the letter if
372     you don't want the same partitioning scheme!
373     </p>
374    
375     </body>
376     </subsection>
377     <subsection>
378     <title>Creating the PPC PReP boot partition</title>
379     <body>
380    
381     <p>
382     We first create a small PReP boot partition. Type <c>n</c> to create a new
383     partition, then <c>p</c> to select a primary partition, followed by
384     <c>1</c> to select the first primary partition. When prompted for the
385     first cylinder, hit enter. When prompted for the last cylinder, type
386     <c>+7M</c> to create a partition 7 Mbyte in size. After you've done
387     this, type <c>t</c> to set the partition type, <c>1</c> to select the
388     partition you just created and then type in <c>41</c> to set the
389     partition type to "PPC PReP Boot".
390     </p>
391    
392     <note>
393     The PReP partition has to be smaller than 8 MByte!
394     </note>
395    
396     <pre caption="Crating to PReP boot partition">
397     Command (m for help): <i>p</i>
398    
399     Disk /dev/sda: 30.7 GB, 30750031872 bytes
400     141 heads, 63 sectors/track, 6761 cylinders
401     Units = cylinders of 8883 * 512 = 4548096 bytes
402    
403     Device Boot Start End Blocks Id System
404    
405     Command (m for help): <i>n</i>
406     Command action
407     e extended
408     p primary partition (1-4)
409     <i>p</i>
410     Partition number (1-4): <i>1</i>
411     First cylinder (1-6761, default 1):
412     Using default value 1
413     Last cylinder or +size or +sizeM or +sizeK (1-6761, default
414     6761): <i>+8M</i>
415    
416     Command (m for help): <i>t</i>
417     Selected partition 1
418     Hex code (type L to list codes): <i>41</i>
419     Changed system type of partition 1 to 41 (PPC PReP Boot)
420    
421     Command (m for help):
422     </pre>
423    
424     <p>
425     Now, when you type <c>p</c>, you should see the following partition
426     printout:
427     </p>
428    
429     <pre caption="Created boot partition">
430     Command (m for help): <i>p</i>
431    
432     Disk /dev/sda: 30.7 GB, 30750031872 bytes
433     141 heads, 63 sectors/track, 6761 cylinders
434     Units = cylinders of 8883 * 512 = 4548096 bytes
435    
436     Device Boot Start End Blocks Id System
437     /dev/hdb1 1 3 13293 41 PPC PReP Boot
438    
439     Command (m for help):
440     </pre>
441     </body>
442     </subsection>
443     <subsection>
444     <title>Creating the Swap Partition</title>
445     <body>
446    
447     <p>
448     Let's now create the swap partition. To do this, type <c>n</c> to create
449     a new partition, then <c>p</c> to tell fdisk that you want a primary
450     partition. Then type <c>2</c> to create the second primary partition,
451 swift 1.2 <path>/dev/sda2</path> in our case. When prompted for the first
452 swift 1.1 cylinder, hit enter. When prompted for the last cylinder, type
453     <c>+512M</c> to create a partition 512MB in size. After you've done
454     this, type <c>t</c> to set the partition type, <c>2</c> to select the
455     partition you just created and then type in <c>82</c> to set the
456     partition type to "Linux Swap". After completing these steps, typing
457     <c>p</c> should display a partition table that looks similar to this:
458     </p>
459    
460     <pre caption="Partition listing after creating a swap partition">
461     Command (m for help): <i>p</i>
462    
463     Disk /dev/sda: 30.7 GB, 30750031872 bytes
464     141 heads, 63 sectors/track, 6761 cylinders
465     Units = cylinders of 8883 * 512 = 4548096 bytes
466    
467     Device Boot Start End Blocks Id System
468     /dev/hdb1 1 3 13293 41 PPC PReP Boot
469     /dev/hdb2 4 117 506331 82 Linux swap
470    
471     Command (m for help):
472     </pre>
473    
474     </body>
475     </subsection>
476     <subsection>
477     <title>Creating the Root Partition</title>
478     <body>
479    
480     <p>
481     Finally, let's create the root partition. To do this, type <c>n</c> to
482     create a new partition, then <c>p</c> to tell fdisk that you want a
483     primary partition. Then type <c>3</c> to create the third primary
484     partition, <path>/dev/sda3</path> in our case. When prompted for the
485     first cylinder, hit enter. When prompted for the last cylinder, hit
486     enter to create a partition that takes up the rest of the remaining
487     space on your disk. After completing these steps, typing <c>p</c> should
488     display a partition table that looks similar to this:
489     </p>
490    
491     <pre caption="Partition listing after creating the root partition">
492     Command (m for help): p
493    
494     Disk /dev/sda: 30.7 GB, 30750031872 bytes
495     141 heads, 63 sectors/track, 6761 cylinders
496     Units = cylinders of 8883 * 512 = 4548096 bytes
497    
498     Device Boot Start End Blocks Id System
499     /dev/hdb1 1 3 13293 41 PPC PReP Boot
500     /dev/hdb2 4 117 506331 82 Linux swap
501     /dev/hdb3 118 6761 29509326 83 Linux
502    
503     Command (m for help):
504     </pre>
505     </body>
506     </subsection>
507     <subsection>
508     <title>Saving the Partition Layout</title>
509     <body>
510    
511     <p>
512     To save the partition layout and exit <c>fdisk</c>, type <c>w</c>.
513     </p>
514    
515     <pre caption="Save and exit fdisk">
516     Command (m for help): <i>w</i>
517     </pre>
518    
519     <p>
520     Now that your partitions are created, you can now continue with <uri
521     link="#filesystems">Creating Filesystems</uri>.
522     </p>
523    
524     </body>
525     </subsection>
526     <subsection>
527     <title>Filesystems?</title>
528     <body>
529    
530     <note>
531     Several filesystems are available. Ext2 and ext3 are found stable on the
532     PPC64 architecture, reiserfs and xfs are in experimental stage. jfs is
533     unsupported.
534     </note>
535    
536     <p>
537     <b>ext2</b> is the tried and true Linux filesystem but doesn't have metadata
538     journaling, which means that routine ext2 filesystem checks at startup time can
539     be quite time-consuming. There is now quite a selection of newer-generation
540     journaled filesystems that can be checked for consistency very quickly and are
541     thus generally preferred over their non-journaled counterparts. Journaled
542     filesystems prevent long delays when you boot your system and your filesystem
543     happens to be in an inconsistent state.
544     </p>
545    
546     <p>
547     <b>ext3</b> is the journaled version of the ext2 filesystem, providing metadata
548     journaling for fast recovery in addition to other enhanced journaling modes like
549     full data and ordered data journaling. ext3 is a very good and reliable
550     filesystem. It has an additional hashed b-tree indexing option that enables
551     high performance in almost all situations. In short, ext3 is an excellent
552     filesystem.
553     </p>
554    
555     <p>
556     <b>ReiserFS</b> is a B*-tree based filesystem that has very good overall
557     performance and greatly outperforms both ext2 and ext3 when dealing with small
558     files (files less than 4k), often by a factor of 10x-15x. ReiserFS also scales
559     extremely well and has metadata journaling. As of kernel 2.4.18+, ReiserFS is
560     solid and usable as both general-purpose filesystem and for extreme cases such
561     as the creation of large filesystems, the use of many small files, very large
562     files and directories containing tens of thousands of files.
563     </p>
564    
565     <p>
566     <b>XFS</b> is a filesystem with metadata journaling that is fully supported
567     under Gentoo Linux's xfs-sources kernel. It comes with a robust feature-set and
568     is optimized for scalability. We only recommend using this filesystem on Linux
569     systems with high-end SCSI and/or fibre channel storage and a uninterruptible
570     power supply. Because XFS aggressively caches in-transit data in RAM, improperly
571     designed programs (those that don't take proper precautions when writing files
572     to disk and there are quite a few of them) can lose a good deal of data if the
573     system goes down unexpectedly.
574     </p>
575    
576     <p>
577     <b>JFS</b> is IBM's high-performance journaling filesystem. It has recently
578     become production-ready and there hasn't been a sufficient track record to
579     comment positively nor negatively on its general stability at this point.
580     </p>
581    
582     </body>
583     </subsection>
584     <subsection id="filesystems-apply">
585     <title>Applying a Filesystem to a Partition</title>
586     <body>
587    
588     <p>
589     To create a filesystem on a partition or volume, there are tools available for
590     each possible filesystem:
591     </p>
592    
593     <table>
594     <tr>
595     <th>Filesystem</th>
596     <th>Creation Command</th>
597     </tr>
598     <tr>
599     <ti>ext2</ti>
600     <ti><c>mke2fs</c></ti>
601     </tr>
602     <tr>
603     <ti>ext3</ti>
604     <ti><c>mke2fs -j</c></ti>
605     </tr>
606     <tr>
607     <ti>reiserfs</ti>
608     <ti><c>mkreiserfs</c></ti>
609     </tr>
610     <tr>
611     <ti>xfs</ti>
612     <ti><c>mkfs.xfs</c></ti>
613     </tr>
614     <tr>
615     <ti>jfs</ti>
616     <ti><c>mkfs.jfs</c></ti>
617     </tr>
618     </table>
619    
620     <p>
621     For instance, to have the root partition (<path>/dev/sda4</path> in our example)
622     in ext3 (as in our example), you would use:
623     </p>
624    
625     <pre caption="Applying a filesystem on a partition">
626     # <i>mke2fs -j /dev/sda4</i>
627     </pre>
628    
629     <p>
630     Now create the filesystems on your newly created partitions (or logical
631     volumes).
632     </p>
633    
634     </body>
635     </subsection>
636     <subsection>
637     <title>Activating the Swap Partition</title>
638     <body>
639    
640     <p>
641     <c>mkswap</c> is the command that is used to initialize swap partitions:
642     </p>
643    
644     <pre caption="Creating a Swap signature">
645     # <i>mkswap /dev/sda3</i>
646     </pre>
647    
648     <p>
649     To activate the swap partition, use <c>swapon</c>:
650     </p>
651    
652     <pre caption="Activating the swap partition">
653     # <i>swapon /dev/sda3</i>
654     </pre>
655    
656     <p>
657     Create and activate the swap now.
658     </p>
659    
660     </body>
661     </subsection>
662     </section>
663     <section>
664     <title>Mounting</title>
665     <body>
666    
667     <p>
668     Now that your partitions are initialized and are housing a filesystem, it is
669     time to mount those partitions. Use the <c>mount</c> command. Don't forget to
670     create the necessary mount directories for every partition you created. As an
671     example we create a mount-point and mount the root and boot partition:
672     </p>
673    
674     <pre caption="Mounting partitions">
675     # <i>mkdir /mnt/gentoo</i>
676     # <i>mount /dev/sda4 /mnt/gentoo</i>
677     </pre>
678    
679     <note>
680     If you want your <path>/tmp</path> to reside on a separate partition, be sure to
681     change its permissions after mounting: <c>chmod 1777 /mnt/gentoo/tmp</c>. This
682     also holds for <path>/var/tmp</path>.
683     </note>
684    
685     <p>
686     Finally we have to create the <path>/dev</path> files in our new home, which is
687     needed during the bootloader installation. This could be done by "bind"-mapping
688     the <path>/dev</path>-filesystem from the LiveCD:
689     </p>
690    
691     <pre caption="Bind-mounting the /dev-filesystem">
692     # <i>mkdir /mnt/gentoo/dev</i>
693     # <i>mount -o bind /dev /mnt/gentoo/dev</i>
694     </pre>
695    
696     <p>
697     We will also have to mount the proc filesystem (a virtual interface with the
698     kernel) on <path>/proc</path>. But first we will need to place our files on the partitions.
699     </p>
700    
701     <p>
702     Continue with <uri link="?part=1&amp;chap=5">Installing the Gentoo
703     Installation Files</uri>.
704     </p>
705    
706     </body>
707     </section>
708     </sections>

  ViewVC Help
Powered by ViewVC 1.1.20